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�Introduction

This document introduces the notions sustaining the « Programming with States » paradigm and presents the version V1.0a of the development tools supporting this approach. The purpose of this work is to develop a toolset based on a « state notion » in order to improve software quality while reducing development time and increase reuse of components.

The reader is advised that the current version of the toolset is still a prototype. The current tools have been developed in order to ease the understanding the “State Programming” paradigm by making it possible to develop little programs based on classes defining states. The author of the tools could not be hold has responsible for any damages resulting of the use of the tools (refer to the copyright notice bellow).

Related publications:

1996	Article entitled "User assistance for Object Behavior Composition/Decomposition", to be published in the Object Oriented Systems (O.O.S.) research magazine.

1995	Article entitled "A dynamic model extension to integrate state inheritance and objects", The Report on Object Analysis and Design (R.O.A.D.), Vol.2 N°2 July-August 1995.

1995	Article entitled "Extension de la notion de type dans les langages orientés objet"(1), presented at the internal congress of computer science of Bucharest (IE'95, 10-13 May 1995, Bucharest, Romania).

1995	Article entitled "Integrating States in an Object-Oriented Concurrent Model"(2), presented at the TOOLS'95 EUROPE congress (6-10 March 1995, Versailles).

1993	Article entitled "Introduction de la notion d'état dans le modèle objet", presented at the internal congress of computer science of Bucharest (IE'93, 19-22 May 1993, Bucharest, Romania).

1993	Article entitled "Introducing States in the Object Model", presented at the TOOLS'93 USA congress (2-7 August 1993, Santa-Barbara).

(1)	"Extension of the type notion in the Object-Oriented Languages".

(2)	This article deals with the way to merge Object Oriented concurrent programming and the description of the object expected behavior expressed in terms of state. It is really difficult to understand and the results can not really be applied.
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��The « State Notion »

Purpose

The purpose of this work is to improve the quality and reliability of programs developed using an Object-Oriented Approach. As this technique is relatively new in the industry, its application relies heavily on the use of development methods. Today, a sufficient number of programs have been developed using Object Oriented Development Methods and we can make a correct estimation of the success of the application of this technique. It appears that users are not too confused by the new way of  “thinking in terms of objects”. But they are very frustrated with not being able to exploit, during the coding phases of the development, a major part of the model they have built, during the analysis and design phases,  although the development method they have followed require them to build these models. Indeed, at present, there is no proper way to exploit the “Dynamic model of the applications”:



� INCORPORER MSDraw  ���



It seems that a good way to improve the reliability of the applications is to overcome this problem by extending the expression power of the common object oriented languages (for example C++ and Eiffel) in order to enable them to integrate whole or part of the information provided by the dynamic model of the applications. This is achieved by using a suitable notion of state helping the description of the expected dynamic behavior of the objects. The integration of this notion in the Object-Oriented Model has been carefully studied, especially the aspect of the « inheritance of states between classes », so that it is possible for a subclass to inherit the behavior description of its ancestor(s).

Benefits

The most evident advantage of using the state notion is to extend the code generation capabilities of the existing CASE Tools. At present, these tools only use the « Static model » of the applications. The use of this model only permits the automatic generation of the data structure of the classes. Even though this is useful, it is much more interesting to be able to automatically generate the code (usually called methods or members functions) that implements the behavior of the objects. Unfortunately (for obvious reasons) this generation is impossible and the developers will still have to write this code. However, the exploitation of the « Dynamic model » of the applications allows the automatic control of the correctness of this code�. Thus most of the tests usually inserted by the developers into their own code is now unnecessary and we are certain to obtain a very good quality of produced code because all the existing functions/methods implemented in this code are automatically checked. Moreover, as the insertion of the controls is automatic, they can also be automatically removed (after the validation phase of the software) in order to produce a more efficient (i.e. fast) code.

The firsts benefit can be summarized by:

Faster implementation of more reliable applications

The second advantage of using states, during the analysis and design phases, in order to describe the expected behavior of the objects, is to provide all the people involved in the development of important software a common language to express the way the different parts of the whole software communicate with each other. As the notion of state is simple and easy to understand, even the customer can be involved in the analysis phase. This ensures that his wishes are well understood by the analysis and development team.

The second benefit can be summarized by:

Providing a simple and powerful common language

The third advantage is to help the development of really reusable pieces of software. It has been noticed that the main problem in trying to put into practice code reuse is the difficulty in understanding the behavior of already existing parts of software. Referring to the second advantage mentioned above, this drawback is overcome by the use of states for the behavior description. Moreover, because states allow the automatic generation of controls, it become less important to perfectly understand all the details of a piece of software written by someone else in order to test it and to ensure that it effectively corresponds to the needs of the  « reuser ».

Note that this result are achieved only because states are integrated in the object model in such a way that it is possible for any sub-class to inherit from the states (and thus the behavior) described in its ancestor class (multiple inheritance between classes is also supported)�.

The third benefit can be summarized by:

Allowing the development of really reusable pieces of software

How to use it (getting started)

The introduction of the state notion in the programming languages relies on a syntactical extension of the supporting language. For C++ this extension comprises 14 new keywords (for more details c.f. chapter 6).  

These key words permit to associate state to classes but also allow the description of pre-conditions and post-conditions associated with methods as well as the description of class invariant.

This section describes very briefly the use of some of these key words through a simple example using two classes (the example used here is the « DemoWin » example). For more information concerning the use of the language extension in order to describe the object behavior refer to the chapter 6 and the other examples provided on the « Demo Disk » floppy.

The class Door

The class Door is the root of the class inheritance hierarchy of this example.

The states of the class Door describe the minimal behavior of any door. Before trying to describe states in the class interface, it is best to describe the expected behavior of the instances of the class in term of state/transition diagrams.

Models of the class Door
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We notice here two states open and closed both belonging to the same state package. A state package regroups several states each of them corresponding to the same « point of view » on the object. Here open and closed deal with the position of the Door.

We can now translate these diagrams into code in the class interface:

class Door

{

	protected:

		int	isClosed;

	public:

			Door(void);

			~Door(void);

		void 	closeDoor(void);

		void 	openDoor(void);



	invariant: ( isClosed == TRUE ) || ( isClosed == FALSE ); // facultative

	package position ;			// as each state belong to a package packages have to be

							// declared before the states

	state   closed : position initial final	// the state closed belongs to the package position

							// as a Door is created in the closed state closed is an initial

	{						// state. As a Door can only be deleted when closed, closed

							// is a fibal state.

		signature:	isClosed == TRUE;

		accepted:	openDoor(void) (open);	// in closed the method openDoor is accepted and must

								// induce a transition to the open state.

		refused:	closeDoor(void); 	// in closed the method closeDoor is refused

	}

	state   open : position

	{

		signature:	isClosed == FALSE;

		accepted:	closeDoor(void) (closed);

		refused:	openDoor(void);

	}

};

The class SecurityDoor

The class SecurityDoor is a sub-class of the class Door. Its states describe the behavior of a Door that can be locked and unlocked.

Models of the class SecurityDoor
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We notice here that a SecurityDoor has a code which is the number of the key that makes it possible to lock or unlock the SecurityDoor. In order to lock or unlock the SecurityDoor, the right code number must be provided.

We can now translate these diagrams into code in the class interface:



class SecurityDoor : public Door

{

	protected:

		int	isLocked;

		int	keyNumber;

	public:

			SecurityDoor(int keyCode);

			require : keyCode>0;			// Pre-condition of the constructor

			ensure  : keyNumber==keyCode;	// Post-condition of the constructor

			~SecurityDoor( void );

		void	lockDoor( int keyCode );

			 require : keyCode==keyNumber;	// Pre-conditions for lockDoor

		void	unlockDoor( int keyCode );

			require : keyCode==keyNumber;	// Pre-conditions for unLockDoor

		int	getKeyNumber( void );



	invariant: ( isLocked == TRUE ) || ( isLocked == FALSE );

	state unlocked : position.closed initial final	// unlocked is a child (specialization) of the state

									// closed that belongs to the package position.

	{								//in the class SecurityDoor it is initial and final.

		signature:	isLocked==FALSE;

		accepted:	lockDoor(int) (locked),getKeyNumber(void);

		refused:	unlockDoor(int);

	}

	state locked : position.closed

	{

		signature:	isLocked==TRUE;

		accepted:	unlockDoor(int) (unlocked),getKeyNumber(void);

		refused:	lockDoor(int),openDoor(void);

	}

};



Restrictions imposed while Programming with States

Because of the way the behavior control are analyzed and implemented (explained in the following chapters) there are some (reasonable) restrictions way applications have to be written in order to support the « Programming with states » paradigm.

In this section, we only describe the « theoretical » limitations related to the use of states. The « practical » limitations related to the level of development of the toolset are detailed chapter 4.

Constraints on state and package names

Each state will be associated a unique identifier which name is created by concatenating the name of the parent package, the character « _ » and the state name. For this reason it is forbidden to use the character « _ » in the name of a state or a package. If this was allowed we could end up with situation like:

the state A_B belonging to the package C, would have as unique name A_B_C

the state A belonging to the package B_C, would have as unique name A_B_C

When the tool detect a character « _ » in a state or package name an error message is displayed and the translation process halted.

Constraints on method and state/package declaration order

When in a state/package declaration a method name is encountered, the tool checks that the method is effectively known from the class (i.e. either the class defines the method or inherits the method). If it is not the case, the translation is halted after an error message being issued.

Constraints on method definitions

As the implementation of object behavior control relies on an enrichment of the methods body that can only be done when all the states of a class have been analyzed, it is not possible to define a method within a class interface. This means that methods can not be defined inline, they can only be declared inline and defined later (methods can not be defined after the states as the states need to know about the methods, see previous point).

Relation between method declarations and definitions

When pre/post-conditions are used in the class interface, some parameter names have to be given (especially for pre-conditions). If the same names are not used at the method definition level compile time errors will arise as only the names used at the declaration level for the pre/post-conditions will be used by the behavior control mechanism.

How does it works

The « Programming with States » paradigm relies on successive translations of behavior description in order to produce (automatically) what is called some « behavior control code » that will be used at runtime in order to ensure that the effective object behavior really conforms with the described one (i.e. the behavior expressed in term of states).

As already pointed out « Programming with States » is easier when a development environment is used (if possible a graphical one). The figure bellow presents the ideal situation where to put the « Programming with States » paradigm in practice.

� INCORPORER MSDraw  ���

The current version of the toolset does only contain the « second translation tool » (developed for the C++ language). This tools being composed of two distinct programs (or sub-tools):

The first one named checker.exe is used to analyze the C++ extensions and to generate the code needed in order to control at runtime the object effective behavior.

The second named epure.exe is used to remove from the enriched code all the new key words by placing then into comments.

To produce the « final version » of the figure above (i.e. a version without any behavior control code) the translation process does only consists in « purifying » the source code (i.e. transforming the new key words into comments). This only requires the use of the epure.exe tool.

To produce the « test version » however requires the use of both of the tools:
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Practically, the « purifying tool » (epure.exe) is automatically called by the « translating tool » (checker.exe) so that the user has not to worry about it.

�Using the tools

Calling the tools

The tools checker.exe and epure.exe are called from the « command line » and support many parameters. When the syntax for calling the tools is not respected some help is displayed.

As the tool epure.exe is automatically called by checker.exe, only the commands to launch checker.exe are explained bellow. This command looks like:

checker [options] <source file>

WARNING :

The tools checker.exe and epure.exe have to be in the same directory than the files to be translated.



The checker.exe tool supports 3 options (that are not « case sensitive ») :

the option "-c" (or "-C") is used to control the validity of a given file,

the option "-p" (or "-P") is used to purify a given file. This option is used when generating the « final version », i.e. a version without any added behavior control code.

the option "-t" (or "-T") is used to translate a given file. This option is used when generating the « test version », i.e. a version containing the added behavior control code.

The "-t" option is the most used one and requires the use of a second parameter in order to fix the « severity level » of the added control code. This severity level indicates to the tool which methods have to be controlled:

severity level�controlled methods��1�public��2�public protected��3�public protected private��WARNING :

The constructor and destructor methods are always controlled whatever the serenity level. The reason being that the control for these methods does not consists in ensuring that they are called in a state that allows their execution nor controlling that the expected transition has taken place. The control aims to ensure that the newly created objects do appear in states described as initial and that the objects to be deleted are in states described as final.

The "-t" option has three variants:

the « base » version "-t" (already studied),

the « light » version "-tl" (or "-TL") that only generates control code to ensure that methods are called in the right states but does not check the transitions.

the « debug » version "-td" (or "-TD") very close from the « base » version but displaying messages related to the effective state of the objects each time a method execution is requested or terminate.

A last option named "-nl" can be added to any "-tx" option. It is meant to be used when the « back-end » C++ compiler does not support « #line » statements. By default, the epure.exe tool adds « #line » to « synchronize » any error message the C++ compiler could signal when invoked on translated code.

Examples of calling the checker.exe tool:

checker -c document.ehp	to control the syntax of the « document.ehp » file (that is supposed to contain the class Document interface).

checker -p document.ehp 	to generate the « document.hpp » file by transforming into comments the new key words used in the file « document.ehp » to describe the behavior of a document.

checker -t -2 document.ehp 	to generate the « document.hpp » file by copying the code contained in the « document.ehp » file, adding the « behavior control code »  and transforming the new key words into comments (transformation made by the epure.exe tool).

checker -t -2 -nl document.ecp 	same as above but without inserting the « #line » statements.

The generated files

The checker.exe tool can be called on files containing native C++ code or enriched code. Most of the time it is used to generate the behavior control code from the expected behavior description expressed in term of states (this description being placed in the class interfaces). The tool is able to differentiate files containing enriched code from the files containing native code by looking at their name extension. By default, the tool uses:

the « EHP » extension for files containing declaration of classes using states.

the « ECP » extension for files containing definition of classes using states.

A third type of extension is also used: the « NOT » extension. Any file having this extension will not be analyzed by the checker.exe tool (this make it possible to circumvent some limitations of the tool especially pieces of code it is unable to properly analyze even though they are syntactically and semantically correct).

The file name extensions used by the tool are parametrised and described in the « CHECKER.CFG » file:

MAIN_ROOT_NAME="ehp"	(	4 first characters of files containing

		« free functions » (like the « main » function).

STATE_DCL_EXT="ehp"	(	declaration of classes using states

STATE_DEF_EXT="ecp"	(	definition of classes using states

CPP_DCL_EXT="hpp"	(	declaration of classes in C++ native code

CPP_DEF_EXT="cpp"	(	definition of classes in C++ native code

NOT_FILE_EXT="not"	(	files not to analyze

TMP_FILE_EXT="tmp"	(	temporary files

COD_FILE_EXT="cod"	(	file containing constants used by the

		behavior control code

	WARNING: DO NOT CHANGE!!!

When called using the "-p" and "-t" options, the tools generate files with the same name than the original file it has been given but having a different extension (parametrizing the file name extension make it possible to adapt them to the C++ compiler). Example:

the files "xxx.EHP" will be transformed into files "xxx.HPP"

the files "xxx.ECP" will be transformed into files "xxx.CPP"



The tool checker.exe must be called on ALL the files containing enriched code (for example "xxx.EHP" and "xxx.ECP") used in an application in order to generate all the codes related to the states, methods and classes used by the application (see below) and also to obtain all the files containing native code (for example "xxx.HPP" and "xxx.CPP") in order to compile the application.

Example of a command file (for example « BAT » file under DOS) used to automate the construction of an application using two classes « A » et « B » and a main file named « mainfile » because it contains the function « main ».

del *.cod	delete the files containing constants

del classA.hpp	delete the previously generated files (if any)

del classB.hpp

del classA.hpp

del classB.hpp

del mainfile.cpp

del statfina.obj	delete the result of a previous compilation (if any)

del statinit.obj

del clasanc.obj

del statanc.obj

del permise.obj

del interdit.obj

del exitstat.obj

checker -t -1 classA.ehp	translation of all the files

checker -t -1 classA.ecp

checker -t -1 classB.ehp

checker -t -1 classB.ecp

checker -t -1 mainfile.ecp

make	call a standard compiler 



WARNING :

The files containing the declaration of ancestor classes have to be translated before the files containing the declarations of the sub-classes.



When used with the option "-t" or "-T", the translation tool also generates files containing native code but also several other files that contain information used by the « behavior control code » (for more details see the chapter « Translation principle ») :

CLASSCOD.COD	file containing the codes associated to the classes using states.

STATECOD.COD	file containing the codes associated to the states.

METODCOD.COD	file containing the codes associated to the methods.

ALLCODES.COD	file containing general information on the application like the number of classes, states, methods.....

CLASANC.COD	file storing the inheritance links between classes.

STATANC.COD	file storing the inheritance links between states.

STATINIT.COD	file storing the codes of the initial states of each class.

STATFINA.COD	file storing the codes of the final states of each class.

PERMISE.COD	file storing the codes of the accepted methods of each state.

INTERDIT.COD	file storing the codes of the refused methods in each state.

EXITSTAT.COD	file storing the codes of the legal exit states of any executed method according to he state it has been executed in (the file is only generated if the translation option differs from "-tl" or "-TL").

Codes associated with classes, states and methods must be unique (content of the files CLASSCOD.COD, STATECOD.COD, METODCOD.COD). The translating tool ensures this constraint: when a code to be added is already present the translation process is stopped and an error message displayed. This occurs when the same class is translated more than one. Thus the easiest solution to generate the files containing the native code is to translate each time all the classes (all the files) related with the application.

When the option "-t" or "-T" is used, before compiling the generated files (files "xxx.HPP" and "xxx.CPP" generated from the files "xxx.EHP" and "xxx.ECP") some more files need to be added. These files contain the code of the « behavior control mechanism » that makes use of the content of the « .COD » files. These files are usually names « the OOPS library ». They are:

STATE.HPP	declaration of the « State » class that is the core of the behavior control mechanism.

STATE.CPP	definition of the « State » class.

STATELIS.HPP	declaration of a  « State » class component.

STATELIS.CPP	definition of this component.

STATEERR.HPP	declaration of the classes used as exceptions when the effective behavior differs from the expected one.

STATEERR.CPP	definition of the exception classes.

STATCTRL.DEF	some « #defined » constants to be added to the user code.

MSGERROR.H	error messages displayed when behavior exceptions are raised.

CLASANC.CPP	declaration of an array using the content of the CLASANC.COD file.

STATANC.CPP	declaration of an array using the content of the STATANC.COD file.

STATINIT.CPP	declaration of an array using the content of the STATINIT.COD file.

STATFINA.CPP	declaration of an array using the content of the STATFINA.COD file.

PERMISE.CPP	declaration of an array using the content of the PERMISE.COD file.

INTERDIT.CPP	declaration of an array using the content of the INTERDIT.COD file.

EXITSTAT.CPP	declaration of an array using the content of the EXITSTAT.COD file.

Remark:

The extensions of the files in the « OOPS Library » ("HPP", "CPP", "H" and "DEF") are not automatically updated when the « checker.cfg » file is changed. If your compiler does not support the default extensions above, you should rename the « OOPS Library » files (« rename » command under DOS, « mv » command under UNIX) and update the « #include » statements they contain. Note that the « #include » statements added at the beginning of the user translated code do not have to be changed (the tool automatically uses the extensions declared in the « checker.cfg » file).



Example of a generic « makefile » file used to compile an application using two classes « A » et « B » and a main file named « mainfile » because it contains the function « main ».

result.exe :	classA.obj classB.obj mainfile.obj

	state.obj    stateerr.obj statelis.obj

	statinit.obj statfina.obj statanc.obj clasanc.obj

	permise.obj  interdit.obj exitstat.obj

<LINKER>	classA.obj classB.obj mainfile.obj

	state.obj    stateerr.obj statelis.obj

	statinit.obj statfina.obj statanc.obj clasanc.obj

	permise.obj  interdit.obj exitstat.obj

classA.obj :  classA.cpp classA.hpp

	<COMPILATEUR> -c -o classA.cpp

classB.obj :  classB.cpp classB.hpp classA.hpp

	<COMPILATEUR> -c -o classB.cpp

mainfile.obj :  mainfile.cpp

	<COMPILATEUR> -c -o mainfile.cpp

state.obj :  state.cpp

	<COMPILATEUR> -c -o state.cpp

stateerr.obj :  stateerr.cpp

	<COMPILATEUR> -c -o stateerr.cpp

statelis.obj :  statelis.cpp

	<COMPILATEUR> -c -o statelis.cpp

statinit.obj :  statinit.cpp allcodes.cod statinit.cod

	<COMPILATEUR> -c -o statinit.cpp

statfina.obj :  statfina.cpp allcodes.cod statfina.cod

	<COMPILATEUR> -c -o statfina.cpp

statanc.obj : statanc.cpp allcodes.cod statanc.cod

	<COMPILATEUR> -c -o statanc.cpp

clasanc.obj : clasanc.cpp allcodes.cod clasanc.cod

	<COMPILATEUR> -c -o clasanc.cpp

ancestor.obj :  ancestor.cpp allcodes.cod ancestor.cod

	<COMPILATEUR> -c -o ancestor.cpp

permise.obj :  permise.cpp allcodes.cod permise.cod

	<COMPILATEUR> -c -o permise.cpp

interdit.obj :  interdit.cpp allcodes.cod interdit.cod

	<COMPILATEUR> -c -o interdit.cpp

exitstat.obj :  exitstat.cpp allcodes.cod exitstat.cod

	<COMPILATEUR> -c -o exitstat.cpp

Source files organisation

Usually the files of a C++ application are decomposed as follow:

files related to the classes used in the application. There is often one file per class declaration (file « classe.hpp ») and one file per class definition (file « classe.cpp »).

files containing « free functions » used by the application (for example the file containing the entry point of the application i.e. the function « main »).

When the translation option is used ("-t" or "-T") the epure.exe tool (automatically called by checker.exe) adds at the beginning of any translated file some « #define » statements as well as some « #include » statements. These statements differs according to the content of the file. If the translated file is intended to contain:

a class declaration (file "xxx.EHP")

#define BEHAVIOR_CTRL_ON	to allow conditional compilation

#include "stateerr.hpp"	declare the behavior exception classes

#include "statelis.hpp"	related to the internal composition of the State class

#include "state.hpp"	declaration of the State class

#ifndef _CODES

#include "classCod.cod"	list of the codes associated with the classes

#include "stateCod.cod"	list of the codes associated with the states

#include "metodCod.cod"	list of the codes associated with the methods

#define _CODES

#endif

a class definition (file "xxx.ECP")

#define BEHAVIOR_CTRL_ON	to allow conditional compilation

#include "stateerr.hpp"	declare the behavior exception classes

#include "statelis.hpp"	related to the internal composition of the State class

#include "state.hpp"	declaration of the State class

the definition of « free functions » (files "MAINxxx.ECP")

#define BEHAVIOR_CTRL_ON	to allow conditional compilation

#include <stdlib.h>	for abort()

#include <except.h>	for set_terminate(...)

#include "stateerr.hpp"	declare the behavior exception classes

WARNING :

The epure.exe tool differentiates the files containing the definition of classes using states and the definition of « free functions » (i.e. files having as extension « ECP ») by looking at the 4 firsts characters of their name. By default any file containing enriched C++ code which names starts with « MAIN » will be considered as containing « free functions ». This default setting can be changed in the « checker.cgh » file.

�The BEHAVIOR_CTRL_ON constants makes it possible to write programs that take into account the presence (or absence) of the « object behavior control mechanism ». Example:

#ifdef BEHAVIOR_CTRL_ON

if (objet.isInState(.....))

#else

if (objet.attribut == X)

#endif

The user can choose the portions of his code that need to be controlled by putting them between BEGIN_BEHAVIOR_CTRL and END_BEHAVIOR_CTRL statements. Example:

#include "STATCTRL.DEF"

	<<< NON controlled code >>>

BEGIN_BEHAVIOR_CTRL

	<<< controlled code >>>

END_BEHAVIOR_CTRL

WARNING :

In order to use the BEGIN_BEHAVIOR_CTRL and END_BEHAVIOR_CTRL statements, the file STATCTRL.DEF has to be included.

The BEGIN_BEHAVIOR_CTRL and END_BEHAVIOR_CTRL statements add into the user’s code the characters « { » and « } ». This affects the visibility of the variables declared between the two statements. The epure.exe tool will ensure that they are as many characters « { » as characters « } » between the two statements.

The configuration file

A configuration file named « STATE.CFG » has been added that allow the user to change the default settings of the tools when the "-t" (or "-T") option is used. The changes in the settings affect:

the way messages are displayed (different under DOS and WINDOWS),

the presence/absence of functions to monitor at runtime the behavior of the behavior control mechanism,

the way the behavior control mechanism is implemented (according to the limitations of the used C++ compiler, for example the ability to support exceptions),

the « style » to be used in the behavior control code in order to tale into account the « C++ version » supported by the compiler.

The default content of this configuration file is as follow:

/* ******************************************************************** */

/* configuration file for the controls based on state descriptions */

/* ******************************************************************** */

/* ------------------------------------------------------------------------------- */

/* List of supported operating systems */

#define STATE_DOS	1

#define STATE_WINDOWS	2



/* Definition of the OS currently used */	allow the user to select his OS 

#define STATE_SYSTEME STATE_DOS	

/* ------------------------------------------------------------------------------- */

/* List of the supported family of compilers.                                */

#define STATE_BORLAND   1

#define STATE_MICROSOFT 2



/* Definition of the current compiler.                                           */

#define STATE_COMPILER STATE_BORLAND 	mandatory if « TC Lite » is to be used

/* ------------------------------------------------------------------------------- */

/* STATE_DEBUG control the insertion of monitoring functions */

#define STATE_DEBUG



/* ------------------------------------------------------------------------------- */

/* STATE_TRACE control the insertion of traces */	when « deep » debug is required

/* #define STATE_TRACE                                                          */

/* ------------------------------------------------------------------------------- */

/* STATE_LIGHT Advanced option that may only set to 1 */

/* if the translation option used is "-tl" or"-TL" for     */

/* ALL the files of the application.                            */

#define STATE_LIGHT	0

/* ------------------------------------------------------------------------------- */

/* STATE_USE_EXCEPT Control the use of exceptions */

/* ------------------------------------------------------------------------------- */

#define STATE_USE_EXCEPT 1

/* ------------------------------------------------------------------------------- */

/* STATE_OLD_COMPILER control the style of the added code*/

#define STATE_OLD_COMPILER 0

/* ------------------------------------------------------------------------------- */

/* The STATE_STATIC_IN_INLINE is an advanced option !!    */

/* When set to 0 it prevents the introduction of static variables  */

/* into inline methods. The translation does then increase the   */

/* size of the objects as the variables are introduced as a         */

/* private object variables.                                                          */

/* When set to 1 it allows the introduction of static variables      */

/* into inline methods. The translation does then induce lot of    */

/* warning messages at compile time.                                        */

#define STATE_STATIC_IN_INLINE 0 

/* ------------------------------------------------------------------------------- */



Special cases

Classes without states

Classes without states may appears inside hierarchies of classes defining states. In the example bellow, the A and C classes define states whereas the B class does not:
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If we assume there is no state or method redefinition then the behavior of an instance of the class C will be monitored at run time according to the behavior expressed by the states described in the A and C classes. Methods defined in the B class will not be controlled except if they are redefined in the C class and mentioned in the states of this class. The methods defined in the A class will be controlled according to the states described in this class except in they are redefined in the class B (in such a case, the redefinition will not be controlled).

The translation of such an application will requires the following actions:

checker -t -1	classA.ehp	translate the class A

checker -t -1	classA.ecp

checker -p	classB.ehp 	purify the class B

checker -p	classB.ecp

checker -t -1	classC.ehp	translate the class C

checker -t -1	classC.ecp

checker -t -1	mainfile.ecp 	translate the main file

It makes sense to purify the class B as the user has never developed a file with a « HPP » extension for the class A. In this case, also he does not introduce any state in the class B, he will probably use in the class B an include statement like this one:

#include "Classe_A.EHP"

By purifying the class B we trigger the automatic replacement of the « EHP » extension by « HPP » in the « #include » statements.

Classes abstract by states

In the example bellow, the class B defines some abstract states (i.e. states whose signature is virtual). For this reason, it is impossible to compute in which state is an instance of this class therefore it must be impossible to create instances of this class. This is achieved by adding a pure virtual method in its interface. Example :
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If the class C (or D) details the signature of the abstract states it inherits from the class B (by redefining these states), it became possible to compute the current state of its instances thus legal to create some. The class C (or D) is then transformed in a class that can be instanciated and the behavior of its instances is monitored according to the states described in the A and B classes.

Under the invocation point of view of the checker.exe tool, there is no difference between translating a « concrete » class or a class « abstract by states ». The only difference is at the generated code level (i.e. the content of the files having a « COD » extension). No code is associated with the abstract classes: Classes abstract by states as well as abstract states have no associated code whereas the methods of these classes do have an associated code. The other difference (with classes that do not declare states) is that the methods of classes abstract by states are enriched with behavior control code.

�Translation principle

Details of the behavior control code

The code used to monitor the object behavior at run time can be decomposed in two parts:

Code generated by the translation tool, this code can also be split in two parts:

code inserted in the user initial code

code that create the « COD » extension files.

 « Fix » code that compose the core of the behavior control mechanism (i.e. the files of the « OOPS library »).

The « fix » code

The behavior control mechanism relies mainly on the class State which attributes can be divided in two groups:

methods and attributes that characterize the behavior of an object that semantically represents the current state of an application object,

methods and attributes used to store the tables of codes associated with classes, states and methods and other run-time information.

A third group contains methods and attributes providing run-time information on the behavior control mechanism itself. These methods and attributes should only be used for debug purposes when one suspect that the problems are induced by the behavior control mechanism.

The class State interface is as follow.

class State

{

#ifdef STATE_DEBUG

	protected:

		static int		nbAlive;	for debug purposes

		static long		nbCreated;	for debug purposes

#endif

	public:

          static	const char* version;	version name

	protected:

		static	StateList* pile;	to store entry state of executed methods

		static	void*	invalidateCtrl[MAXINVALIDATE];	to store objects whose behavior control 

		static	int		nbInvalidated;	is temporarillty idled

		static	int*	tabInitial;	table of initial states (c.f. STATINIT)

		static	int*	tabFinal;	table of final states(c.f. STATFINA)

		static	int*	tabAncestor;	table of inheritance links between states(c.f. STATANC)

		static	int*	tabClassAnc;	table of inheritance links between classes(c.f. CLASANC)

		static	int*	tabPermise;	table of accepted methods (c.f. PERMISES)

		static	int*	tabInterdite;	table of refused methods(c.f. INTERDIT)

#ifdef STATE_LIGHT == 0

		static	int*	tabExitStates;	table of the methods legal exist (c.f. fichiers EXITSTAT)

#endif

	public:

 		static	int		ppConditionInUse;	to avoid infinite loop while pre/post conditions testing

		static	int		globalError;	to cincumvent weaknesses of C++ exception mechanism

#ifdef STATE_DEBUG

		static	int		getStackSize();	for debug purposes

		static	int		getNbAlive();	for debug purposes

		static	long	getNbCreated();	for debug purposes

		static	void	audit();	for debug purposes

#endif

	protected:

					int*	value;	effective value of a current object state

					int		currentSize;	size of the table of effective values

	protected:

							State(State&);	to duplicate states

	public:

							State(int=0);

							~State(); 

					State* estPermise(int,int,int);	control methods allowance at runtime

#ifdef STATE_LIGHT == 0

					State* estCorrecte(void);	control transitions validity at runtime

#endif

					State* estInitial(int);	check at runtime if a state is initial

					State* estFinal(int);	check at runtime if a state is final

					void	display(char* = 0);	display an object current state

					void	set(int,int);	update part of the state value

					int		rang(int);	looks for the position of a state value

					int		etendre(void);	increase the size of the current value table

	private:

					int		etatDescendDe(int,int);

					int		etatDefiniEtatP(int,int);

					int		etatDefiniEtatI(int,int);

	public:					----- class methods -----

		static	void	terminate(void);	used by the exceptions

#ifdef STATE_DEBUG

		static	void	memoryError(void);	to control errors related with lak of memory

#endif

		static	void	invalidateCtrlFor(void*);invaliate the controls for an object

		static	void	activateCtrlFor(void*);	re-activate the controls for an object

		static	int		testActivatedFor(void*);checks the cintrol activation for an object

};

The attributes tabInitial, tabFinal, tabAncestor, tabClassAnc, tabPermise, tabInterdite and tabExitStates are initialized with the files xxx.COD (and the related xxx.CPP files). The content of the « COD » files is detailed later.

The files statelis.hpp and statelis.cpp declare and define the class StateList used internally by the class State to store the vale of the entry states of the methods currently executed by the application.

The files stateerr.hpp and stateerr.hpp declare and define the exception classes hierarchy used by the behavior control mechanism. The hierarchy contains 3 classes:
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The class StateError regroup the minimal behavior expected from any exception used by the behavior control mechanism. The error messages displayed by the exceptions are listed in the « MGERROR.H » file.

The class StateInternalError is in charge of the errors related with actual limitations of the tools.

The class StateBehaviorlError is in charge of the errors related with the differences noticed at runtime between the expected behavior and effective behavior of objects.

The attribute State::globalError is used to store the initial error. Its content is used each time the exception mechanism of the C++ language « fails » and the terminate function is called. Note that the default terminate function is automatically replaced by the State::terminate class method each time the statement BEGIN_BEHAVIOR_CTRL is encountered.

The « COD » files and the behavior control mechanism

The simple files

The « simple » files are:

CLASSCOD.COD	declaration of the class codes.

STATECOD.COD	declaration of the state codes.

METODCOD.COD	declaration of the method codes.

CLASANC.COD	declaration of the class inheritance links.

STATANC.COD	declaration of the state inheritance links.

ALLCODES.COD	declaration of application related constants.

The files CLASSCOD.COD, STATECOD.COD and METODCOD.COD share the same structure:

#define <<< item_name >>> 	0

#define <<< item_name >>> 	1

#define <<< item_name >>> 	2

The names of the different items (either class names, state names or method names) are all used in « #define » statements and receive different values in increasing order.

The <<< item_name >>> related to classes are build by concatenating the name of the class and the string « _Code » (example « ClassA_Code »).

The <<< item_name >>> related to states ate build by concatenating the name of the package to which the state belongs with the name of the state (example « Package_Etat »). Packages do NOT have any associated code.

The <<< item_name >>> related to methods are build by concatenating the method name with its attributes types (example « Method_int » or « Method_void »). Destructors methods do NOT have any associated code.

The file STATANC.COD has the following structure:

/* <<< state_name >>> */ <<< ancestor_state_code >>> ,

/* <<< state_name >>> */ <<< ancestor_state_code >>> ,

/* <<< state_name >>> */ <<< ancestor_state_code >>>

Names of the states are mentioned as comment in front of the code of their ancestor state. when no ancestor does exist, its code is replaced by NOT_A_STATE. The file STATANC.COD is used by the file CLASANC.CPP.

The file CLASANC.COD has the following structure:

/* <<< class_name >>> */	<<< ancestor_class_code >>> , <<< ancestor_class_code >>> ,

	NOT_A_CLASS ,

/* <<< class_name >>> */	<<< ancestor_class_code >>> , NOT_A_CLASS ,

/* <<< class_name >>> */	<<< ancestor_class_code >>>

Class names are mentioned as comments in front of the codes of their ancestor(s) code(s). When no ancestor does exist the code NOT_A_CLASS is used. The file CLASANC.COD is used by the file CLASANC.CPP.

The file CLASANC.CPP has the following structure:

#include "state.hpp"	for State::tabClassAnc

#include "classcod.cod"	for the state codes

#include "allcodes.cod"	for MAX_CLASSES et MAX_ANC_CLASSES

int ClassTabAncestor [MAX_CLASSES] [MAX_ANC_CLASSES] =

	{

		#include "clasanc.cod"

	};

int* State::tabClassAnc = (int*)ClassTabAncestor;

The file ALLCODES.COD has its own structure as it is used to define constants used in all the array declarations:

#define NOT_DEFINED	-3

#define NOT_A_STATE	-1

#define NOT_A_METHOD	-1

#define NOT_A_CLASS	-1

#define SAME_STATE	-2

#define MAX_STATE_SIZE	3�	maximum of an object current state size.

#define MAX_EXIT_STATE	3	maximum of exit states declared

#define MAX_CLASSES	3	last code of classcod.cod +1

#define MAX_ANC_CLASSES	3	maximum of ancestor declared for a class +1

#define MAX_STATES	6	last code of statecod.cod +1

#define MAX_INIT_STATE	2	less or equal to the last code of statecod.cod + 1

#define MAX_FINA_STATE	2	less or equal to the last code of statecod.cod + 1

#define MAX_METHOD_BY_STATE	4	maximum of methods allowed or refused by a state

#define MAX_LST_EXIT_STATE	17	size of the list used to store the exit states

Complex files

The object behavior control relies on 4 methods: estPermise, estCorrecte, estInitial and estFinal. These methods are declared in the class State.

Each call to the method estPermise induces the analysis of the array storing the codes of methods accepted and refused in the current state. This analysis starts from the effective class of the object and goes up into the class hierarchy in order to find the class that defines the current state of the object. The state hierarchy is analyzed (always going « up ») in order to find a state that accepts or refuses the requested method execution (or until the root of the state hierarchy is reached). This analysis used the content of the arrays defined in the files:

PERMISE.COD	for the methods allowed in each state,

INTERDIT.COD	for the methods refused in each state,

STATANC.COD	for the states hierarchy,

CLASANC.COD	for the classes hierarchy.

If the requested method is accepted and if the translation mode used for the class is different from « -TL », the current state of the object (state at the entry point of the method) is stored in a pile (« stack ») of the class State. This is achieved by calling the method addLast :

State::pile(addLast(new State(*this),code);

	pile is a static variable used to store method entry states

	« new State(*this) » create a clone of the current object state,

	code is the code of the exit state list of the executed method.

Remark:

We have to store a copy of the  current state object used to execute the estPermise method because in order to avoid creating State that would never be deleted, by default any created State object is immediately deleted after use:

delete (this(getCurrentState())(estPermise(.....);

or

State* tmpPtr = this(getCurrentState();	delete tmpPtr(estPermise(.....);

In the array storing the accepted methods, a code is associated with each method accepted in each state (see file PERMISE.COD). This code corresponds to the line in the array storing the legal exit states of methods that contains the legal exit states for the tested method (see file EXITSTAT.COD). An example is provided later. This code is also stored when calling the « State::pile(addLast » method.

At the end of the execution of the tested method, a new instance of the State class is created in order to compute the object current state. The method estCorrecte is called on this object�. The method retrieve from the stack the object state BEFORE the tested method execution (i.e. the tested method entry point) in order to compare it with the current state of the object. This comparison takes into account the legal exit states declared for the tested method. In order to retrieve the tested method entry state and the code of the list of legal exit state, the following methods are used:

before = State::pile(getLastState();	before is the method entry state

code  = State::pile(getLastCode();	code is the line number in the array of exit states

In effect, the method entry state in really tested only when the list of legal exit states (extracted from the array of legal exit states by using the code), only contains the code SAME_STATE. this code means that at the end of the method execution, the object must be in the same state than at the method entry.

In order to take into account possible state redefinitions, the codes associated to the accepted and refused methods are stored in array in such a way that the computation « Classe_Code x State_Code » identifies a unique line. This imposes that a state can not be redefined several times in the same class:

code class&state�list of refused methods��C1 x S1�{ M1, M2 } ,��C1 x S2�{ M4, M7 },��C2 x S1�{ NOT_DEFINED },��C2 x S2�{ M4 , M7 , M8 }��In this example, the state S2 is redefined in the class C2 (whereas the state S1 is not). As the lists of accepted and refused method are completely « hidden » when a new one is defined, the developer is obliged to re-enter the methods that were previously refused in the class C1 (if he still wants the methods to be refused) and to add new refused methods (in this example the method M8). We notice here that the activation conditions of the method M8 are different in the classes C1 and C2: The class C2 is more restrictive.

In order to start the search for the authorization/refusal to execute methods, we need to know the effective class of an object requested to execute a method. This is the reason why the class of this object is transmitted as a parameter when the method estPermise is called (see later the description of the method getClassCode).

Even though the total number of states and classes in only know once the last class has been translated there in no problem in « C » to declare the array in which each computation « Class_Code x State_Code » identifies a unique line. If we take as an example the previous case and add to it in the class C2 the definition of a new state S3, we need to be able to integrate this state in C1 so that the code C1 x E3 exists:

cod class&state�list of refused methods���C1 x S1�{ M1, M2 } ,���C1 x S2�{ M4, M7 },���C1 x S3�?????�( to insert��C2 x S1�{ NOT_DEFINED }�,���C2 x S2�{ M4 , M7 , M8 },���C2 x S3�{ M6 , M9 }���To solve this problem, we only need to declare the codes  « Ci x Si » as a bi-dimentional array:

int tableau[MAX_CLASSES][MAX_STATES] =

{

	/* class C1 */	{ /*S1*/ Lst1, /*S2*/ Lst2 },

	/* class C2 */	{ /*S1*/ NO_LIST, /*S2*/ Lst3, /*S3*/ Lst4 }

}

With, LstI being the index of a line in the array of refused methods:

int refusees[MAX_REFUSEES][MAX_LIST_SIZE] =

{

/* Lst1 */ { M1, M2 } ,

/* Lst2 */ { M4, M7 } ,

/* Lst3 */ { M4, M7, M8 } ,

/* Lst4 */ { M6, M9 }

}

In effect, the file INTERDIT.COD groups the definition of these two arrays:

/* CLASS : C1	*/ {

/* C1 S1		*/ { M1 , M2 ,NOT_A_METHOD } ,

/* C1 S2		*/ { M4 , M7 , NOT_A_METHOD} ,

/* ============	*/ },

/* CLASS : C2	*/ {

/* C2 S1		*/ { NOT_DEFINED } ,

/* C2 S2		*/ { M4 , M7 , M8 , NOT_A_METHOD} ,

/* C2 S3		*/ { M6 , M9 , NOT_A_METHOD} ,

/* ============	*/ }

Recall : The file INTERDIT.COD is used by the file INTERDIT.CPP which structure is:

#include "state.hpp"	for State::tabPermise

#include "statecod.cod"	for the state codes

#include "metodcod.cod"	for the method codes

#include "allcodes.cod"	for the different constants

int StateTabInterdite [MAX_CLASSES][MAX_STATES][MAX_METHOD_BY_STATE] =

{

	#include "interdit.cod"

};

int* State::tabInterdite = (int*)StateTabInterdite;

The structure of the file PERMISE.COD is close from the structure of the file INTERDIT.COD. The only little difference comes from the need to associate with each accepted method the code the line describing  its legal exit states in the file EXITSTAT.COD:

/* CLASS : C1	*/ {

/* C1 S1		*/ { { M1,0} , {M2,1} , {NOT_A_METHOD,-1} } ,

/* C1 S2		*/ { {M4,3} , {M7,4} , {NOT_A_METHOD,-1} } 

/* ============	*/ },

/* CLASS : C2	*/ {

/* C2 S1		*/ { {NOT_DEFINED,-1} } ,

/* C2 S2		*/ { {M4,5} , {M8,6} , {NOT_A_METHOD,-1} } 

/* ============	*/ }

The file EXITSTAT.COD structure is:

/* 0 M1 */  {<<< state_name >>>,<<< state_name >>,NOT_A_STATE},

/* 1 M2 */  {<<< state_name >>>,<<< state_name >>,NOT_A_STATE},

/* 2 M4 */  {SAME_STATE},

........

IMPORTANT :

The generation principle for the files INTERDIT.COD and PERMISE.COD assumes that for each class, the complete list of states it inherits (and thus might redefine) has been previously defined: The ancestor classes have to be translated before their sub-classes. In such a case, the presence of a code NOT_DEFINED only signals that the sub-class does not redefine the requested state. This technique is fine in the case of single inheritance between classes. In case of multiple inheritance, even though it is still mandatory to translate the ancestor classes before their sub-classes, all the values « Ci x Si » have to be defined. For this reason, the tool after translating a new class introducing new states will go back to the previous class definitions and add empty lines related to the new states introduced by the last translated class:

/* CLASS : C1	*/ {

/* C1 S1		*/ { M1 , M2 ,NOT_A_METHOD } ,

/* C1 S2		*/ { M4 , M7 , NOT_A_METHOD} ,

/* C1 ??		*/ { NOT_DEFINED } ,	line added after translating « C2 ».

/* ============	*/ },

/* CLASS : C2	*/ {

/* C2 S1		*/ { NOT_DEFINED } ,

/* C2 S2		*/ { M4 , M7 , M8 , NOT_A_METHOD} ,

/* C2 S3		*/ { M6 , M9 , NOT_A_METHOD} ,

/* ============	*/ }

In any case, the order in which states are listed in each class section must be equal to the order in which states are declared in the file STATECOD.COD.

The generated control code

The code generated by the tool checker.exe is added to the user code in order to extend:

the interface of the classes defining/inheriting states,

the body of each method that is defined in a class declaring states.

Changes in the method bodies

In order to monitor the behavior of the instances of the user defined classes, the checker.exe toll insert in the body of the application methods calls to the methods defined in the State class as well as calls to the "getCurrentState", "isInState" and "getClassCode" methods. These methods (described later) are added to the user defined class interfaces. Another method named "abstractByStates" may also be added to some class interfaces. This method is never called as its purpose is to prevent classes that are abstract because of their state definition (« abstract by states ») to be instanciated.

Modifications of the methods are different whether the methods are:

constructors (of classes defining states),

destructors (of classes defining states),

« normal » methods (i.e. neither constructors nor destructors (of classes defining states).

Modifications of the constructors aim to ensure that the newly created object are in effect in a state declared as initial in the class interface.

Example of modification of a constructor method for the class Foo :

Foo::Foo() : FooAncestor()

{

	State::invalidateCtrlFor(this);

	<<< initial constructor body >>>

	State::activateCtrlFor(this);

	{	State* tmpPtr = this(getCurrentState();

		if(tmpPtr)	delete tmpPtr(estInitial(Foo_Code);

		else		throw InternalStateError();	// there should always be a « computable »

								// state at the end of a constructor execution!

	}

}

Invalidating controls for the objects being initialized (by calling the method  « State::invalidateCtrlFor(this); ») aims to allow calls from within the constructor Foo::Foo() to other methods of the object without creating problems because the object current state is not computable. Any method known by an object whose controls are currently invalidated can be executed whatever the object state is. Controls are reactivated before calling the estInitial method by calling the static method « State::activateCtrlFor(this); ». The a new state in created by calling the getCurrentState method of the class Foo. This state is then asked if it is an initial state (call to the estInitial method).

If the result of the estInitial method points out that the object current state is not an initial state fir the class having for code Foo_Code, an exception of the class StateBehaviorlError is raised.

The lines:

	State::activateCtrlFor(this);

	{	State* tmpPtr = this(getCurrentState();

		if(tmpPtr)	delete tmpPtr(estInitial(Foo_Code);

		else		throw InternalStateError(8);

	}

Are also added before any statement containing a return instruction.

Remark :

The getCurrentState method return a NULL pointer when controls are invalidated for the object it is called on. As there should always be a computable object state t the end of a constructor method execution, the controls are reactivated and if for any reason the computed state was not a valid state (« tmpPtr==0 ») an « internal » exception would be raised.

Modifications to the destructors methods aim to ensure that an object being deleted is effectively in a state declared as final.

Example of modification of the destructor of the class Foo :

Foo::~Foo()

{

	{	State* tmpPtr = this(getCurrentState();

		if(tmpPtr)	delete tmpPtr(estFinal(Foo_Code);

		else		throw InternalStateError();

	}

	<<< initial destructor body >>>

}

If the result of the estFinal points out that the current object state is not a final state for the class having for code Foo_Code, an exception of the class StateBehaviorlError is raised.

Modifications of the « normal » methods aim to ensue that they are called when the object current state allows their execution and that they leave the object in the expected state.

Normal method body modification only occurs if the « severity level » that has been chosen for the translation (used in conjunction with the option "-t" or "-T") signals that the method should be tested. The severity levels are:

severity level�controlled methods��1�public��2�public protected��3�public protected private��Example of normal method body modification within the class Foo (in the case of the "-td" option):

void Foo::method(int p1)

{

	{	State* tmpPtr = this(getCurrentState();

		if(tmpPtr)

		{

			tmpPtr( display();			displays the object current state before the test

			delete tmpPtr( estPermise(this(getClassCode(),method_int,0);

		}

	}

	<<< initial method body >>>

	{	State* tmpPtr = this(getCurrentState();

		if(tmpPtr)

		{

			tmpPtr( display();			displays the object current state before the test

			delete tmpPtr( estCorrecte();

		}

	}

}

As the method estPermise requires an instance of the class State, this instance is created by calling the getCurrentState method of the class Foo. If controls are activated for the object at the time this method is called, it returns the object current state, otherwise a NULL pointer is returned. The methods estPermise and estCorrecte may raise exceptions (of the class StateBehaviorlError if they discover that the object effective behavior differs from the expected one).

Because activation conditions of the method method(int p1) may be changed in sub-classes, the code of the effective class of the object willing to execute a controlled method is transmitted as a parameter to the method estPermise (as well as the code associated with the controlled method, for example method_int). The class code is given by the method getClassCode�.

The lines:

	{	State* tmpPtr = this(getCurrentState();

		if(tmpPtr)	delete tmpPtr( estCorrecte();

	}

are added before any statement containing a return instruction. These lines are added at the end of the methods only when their return type is void (the tools assume that the method code is correct and thus that any « math » through the method body contains a return statement).

When a method return type is not void, (but for example: return expression ; ), the checker.exe tools modifies the method body in a way that permits to take into account the possible state changes induced by the returned expression:

source code :

returnType Class::method ( parameters )

{

	.......

	return expression ;

}

modified source code :

returnType Class::method (parameters)

{

	.......

	{

		returnType varTmp = expression ;	temporary variable to store the result 

		{	State*tmpPtr= this(getCurrentState();	transition test

			if(tmpPtr)    delete tmpPtr( estCorrecte();

		}

		return varTmp ;	effective return

	}

}

Remark:

As the analysis capacities of the checker.exe tool are somewhat limited, when complex return expression are used it is recommended to make use of an intermediary variable:

returnType Class::method ( parameters )

{

	.......

	returnType intermediaryVariable = complexReturnExpression ;

	return intermediaryVariable;

}

Class interface modifications

General description

In order to monitor the behavior of the instances of a class defining states, this class has to define a proper "getCurrentState" methods which function is to return a state object representing the instance current state.

As instances states are publics but only accessible for test purposes, the method "isInState" has also to be added to the interface of classes defining states. The purpose of this function is to tell whether or not an object is in a given state.

Finally, in order to be able to know the effective class of the object willing to execute a method, the method "getClassCode" is also added to the class interfaces.

Example of interface modification:

class Foo : public FooFirstAncestor , public FooSecondAncestor

{

	<<< user defined interface >>>

	/* for the states */

#if STATE_STATIC_IN_INLINE == 0

	private:

		int getCurrentStateInUse;

#endif

#if STATE_OLD_COMPILER == 0

	public:

		virtual	inline	int	isInState(int);

	protected:

		virtual	inline	State*	getCurrentState( State* = 0 );

#endif

		virtual	inline	int	getClassCode() { return Foo _Code; }

#if STATE_OLD_COMPILER == 0

};

#endif

/* ========== getCurrentState code ========== */

#if STATE_OLD_COMPILER == 1

protected:

	virtual	inline	State*	getCurrentState( State* ptrState = 0 )

#else

inline State* Foo::getCurrentState(State* ptrState)

#endif

{

	<<< Generated body for the getCurrentState method >>>

}

/* ========== isInState code ========== */

#if STATE_OLD_COMPILER == 1

public:

	virtual	inline int Foo::isInState(int testedState)

#else

inline int Foo::isInState(int testedState)

#endif

{

	<<< Generated body for the IsInState method >>>

}

#if STATE_OLD_COMPILER == 1

};

#endif



The body of the methods "getCurrentState", "isInState" and "getClassCode" is inserted in the file containing the class interface because this is the only place where we can be certain the method is going to be defined each time the class will be used. Placing the added methods in a file named FOO.ECP, would implies that for each class named Foo there is a file named FOO.ECP containing its definition. Other solutions like placing the added methods in a file already containing a constructor method Foo::Foo for the Foo class supposes that there is always such a constructor (and possibly only one in a single file otherwise several versions of the methods "getCurrentState", "isInState" and "getClassCode" will be generated).

In order to avoid multiple definition of the "getCurrentState", "isInState" and "getClassCode" methods declared in the interface file, they are declared as inline methods. This would be a problem if these methods could really be inline methods but because they are declared as virtual inline, the compiler can not expand them unless there is no doubt on which version of the method should be called. This is the reason why, for each class Foo having an ancestor class FooAncestor defining the same virtual inline methods, no inline expansion will occur.

The STATE_OLD_COMPILER is used to take into account old compilers that requires the inline methods to be effectively declared in the class interface.

The STATE_STATIC_IN_INLINE statement allows to choose between the declaration of static variables inside inline methods (which prevents the methods to be expanded inline but induces warning messages at compile time but do not change the object size) and the declaration of a private attribute (which avoids the warning messages but increase the size of the objects). This choice is to be used in the "getCurrentState" in order to avoid infinite recursion (see later).

The « getCurrentState » method

The getCurrentState methods returns the current state of the object it is executed on (provided controls are not invalidated for this object). Because a state signature may contain a method name and because this method may also be controlled there is a risk of infinite recursion (example : the M method, calls the getCurrentState method that calls the getSignature method that calls getCurrentState, ...).

The variable getCurrentStateInUse is used to avoid such a recursion. It is set to 1 when an « instance of the method » getCurrentState is activated for a given object thus any other call to the getCurrentState method from within this object causes a NULL pointer to be returned.

Complete example of a getCurrentState method:

inline State* Foo::getCurrentState(State* ptrState)

{

#if STATE_STATIC_IN_INLINE == 1

	static int getCurrentStateInUse = 0 ;

#endif

	if (getCurrentStateInUse)	{ return 0 ;	}			

	else					{ getCurrentStateInUse = 1;	}

	if (!State::testActivatedFor(this))

	{	getCurrentStateInUse = 0 ;

		return 0 ;

	}

	if (! invariant )	invariant test 

	{	if (!State::globalError) { State::globalError = 5; }

#if STATE_USE_EXCEPT == 1

		throw StateBehaviorError(5,"Foo");

#else

		State::terminate();

#endif

	}

	int    rang = -1;

	State* currentState = ptrState; 			state as it is computed by ancestor :

	currentState = FooFirstAncestor::getCurrentState(currentState);		first ancestor

	currentState = FooSecondAncestor::getCurrentState(currentState);	second ancestor

	if (FooAncetreUN::isInState(redefined_state) && !( new_signature ))

	{	if (!State::globalError) { State::globalError = 8; }	signature redefined states tests

#if STATE_USE_EXCEPT == 1

		throw StateBehaviorError(8,"Foo");

#else

		State::terminate();

#endif

	}

	rang = currentState(rang(parent_state);

	if (rang)

	{	if (signature) { currentState(set(rang,child_state); }	state specializations

		......

	}

	if (isInState(base_state))�				new state packages

	{	rang = currentState(etendre();

		if (signature) { currentState(set(rang,new_terminal_state); }

		......

	}

	getCurrentStateInUse = 0;

	return currentState;

}

The getCurrentState method body may be decomposed in seven parts:

checking if the current state has to be computed,

controlling the invariant,

looking for the current state as it is computed by the ancestor classes (by the ancestor classes getCurrentState methods),

testing states that are signature redefined,

updating the object current state computed by the ancestor classes getCurrentState methods (replacing terminal states code of the ancestor classes by the codes of their terminal specializations in the subclass),

When the Foo class has no ancestor, the line

	State* currentState = FooAncetre::getCurrentState();

is replaced by the line

	State* currentState = new State(NbPackages);

NbPackages being the number of packages based on the class invariant and declared in the Foo class.

checking if states that are used as base for new states in the sub-class are at present « actives ». Is so, the current state is expanded and the codes of the currently « active » terminal states in the considered package are added,

increasing the current state arrity to take into account the new state packages based on the class invariant.

When the Foo class declares a new state package based on its invariant (i.e. without any base state) the line

	if (isInState(base_state))

is removed

The « isInState » method

The isInState method returns an int indicating if the tested object is currently in the state the method has receive the code as parameter.

Example of isInState method body:

inline int Foo::isInState(int testedState)

{

	if ( testedState == a_state )

		return ( (signature)&&( FooFirstAncestor:: isInState(ancestor_of_a_state)) );

	if ( testedState == other_state )

		return ( (signature)&&( FooSecondAncestor:: isInState(ancestor_of_other_state)) );

	.......

	if (FooFirstAncestor:: isInState(testedState) )

		return 1 ;

	if (FooSecondAncestor:: isInState(testedState) )

		return 1 ;

	return 0 ;�

}

WARNING :

The isInState method is not protected against infinite recursion (as the getCurrentState method is). Protecting the isInState method involves practical difficulties. Thus, if a method getSignature is used in the computation of a state signature for the class Foo, and if this methods contains a test like this(isInState(tested_state), an infinite recursion will occur. By opposition with the getCurrentState method in which the recursion detection is used to exit the method, here any recursion detection should triggers an exception : No method used to compute the object state should contain a test of this test.

the « abstractByStates » method

The abstractByStates method aims to prevents the instanciation of a class declaring abstract states or inheriting abstract states without (re)defining their signature. As the computation of the current state of instances of such a class is impossible, the pure virtual method abstractByStates is added in the class interface preventing it to be instanciated.

Example of modification of the interface of a class defining abstract states:

class Foo : public FooAncestor

{

	<<< user defined interface (containing abstract state declarations)>>>

	/* As the class declares abstract states: */

	protected:

		virtual	inline	void	abstractByStates() = 0 ;

};

Remark:

The isInState, getCurrentState and getClassCode methods are not added to the interface of classes defining abstract states as their instances current states can not be computed.

When a class inherits abstract states and « concretize » these states it becomes instanciable and also inherits from the behavior described in its ancestor classes (class abstract by states). This is implemented through a fusion mechanism that merge the behavior definition of the (abstract by state) ancestor class with the behavior added by the sub-class. The content of the isInState, getCurrentState and getClassCode methods takes this fusion into account:

�INCORPORER MSDraw   \* FUSIONFORMAT���

A class inheriting and concretizing abstract states is made instanciable by adding in its interface the « pseudo definition » of the abstractByStates method:

virtual	inline	void	abstractByStates() { }

It is because of this fusion mechanism that the abstract classes never appears in the list of class codes stored in the CLASSCOD.COD file. However, the body of the methods defined in these classes are enriched with calls to the estPermise and estCorrecte methods so that their behavior could be checked (when a sub-class will be made instanciable).

WARNING:

Constructors and destructors methods of abstract classes are not enriched. The reason being that the control of initial and final states relies on the object current state computation that involves a call to the getCurrentState method:

	«  State* tmpPtr = this(getCurrentState();  »

As in C++ the effective class of this within a constructor or destructor method is always the class the constructor or destructor is related to this would induce a call to the getCurrentState method of an abstract by state class which getCurrentState method body is unknown:

		virtual	inline	void	getCurrentState () = 0 ;

Calling such a method from within a constructor or a destructor would trigger a runtime error.

�Present limits of the tools

Limitations related with the tool implementation

C++ grammar related limitations

When the development of the OOPS Toolset has started it has immediately been decided to develop a command line translator and two candidate languages have been selected: C++ and Eiffel. Because Eiffel was already having the notions of pre/post conditions as well as class invariant; it was the favorite. However it was impossible to find an Eiffel grammar under the lex/yacc format. The search for a « public » (i.e. free) grammar for the C++ language has not been easy either. In September 1994, the only « internet available » grammar was a grammar compliant with the version 2.0 of the language (Last modified 7/4/91) provided by Mr. James A. Roskind, under the form of two files (« CPP5.Y » et « CPP5.L »)� :

Copyright (C) 1989-1991 James A. Roskind, All rights reserved. This grammar was developed  and  written by  James  A.  Roskind. Copying  of  this  grammar  description, as a whole, is permitted providing this notice is intact and applicable  in  all  complete copies. Translations as a whole to other parser generator input languages  (or  grammar  description  languages)   is   permitted provided  that  this  notice is intact and applicable in all such copies,  along  with  a  disclaimer  that  the  contents  are   a translation.   The reproduction of derived text, such as modified versions of this grammar, or the output of parser generators, is permitted,  provided  the  resulting  work includes the copyright notice "Portions Copyright (c)  1989, 1990  James  A.  Roskind". Derived products, such as compilers, translators, browsers, etc., that  use  this grammar,  must also provide the notice "Portions Copyright  (c)  1989,  1990  James  A.  Roskind"  in   a manner appropriate  to  the  utility,  and in keeping with copyright law (e.g.: EITHER displayed when first invoked/executed; OR displayed continuously on display terminal; OR via placement in the  object code  in form  readable in a printout, with or near the title of the work, or at the end of the file).  No royalties, licenses  or commissions  of  any  kind are required to copy this grammar, its translations, or derivative products, when the copies are made in compliance with this notice. Persons or corporations that do make copies in compliance with this notice may charge  whatever  price is  agreeable  to  a  buyer, for such copies or derivative works. 

THIS GRAMMAR IS PROVIDED ``AS IS'' AND  WITHOUT  ANY  EXPRESS  OR IMPLIED WARRANTIES,  INCLUDING,  WITHOUT LIMITATION, THE IMPLIED WARRANTIES  OF MERCHANTABILITY  AND  FITNESS  FOR  A  PARTICULAR PURPOSE.

James A. Roskind

Independent Consultant

516 Latania Palm Drive

Indialantic FL, 32903

(407)729-4348

jar@hq.ileaf.com

This grammar, though complete for the version 2.0, does not includes the last evolution of the C++ language:

Required fixes from last release :

1) template support: Not  done:  pending  syntax  specification  from ANSI.  (This looks like a major effort, as ANSI has decided to extend the  "TYPEDEFname"-feedback-to-the-lexer-hack to support template names as a new kind of terminal token.)

2)  exception  handling:  Not done: pending syntax specification from ANSI (but it doesn't look hard)

Last but not least, lex and yacc tools capable of translating such a big grammar (over 4000 lines) in a PC environment were required. Because of segment related memory limitations, no « DOS native » tool was able to deal with the grammar. It has then been decided to use the DJGPP distribution which is a port under DOS of the major UNIX tools developed by the GNU. These tools require a memory expander named GO32 in order to by-pass the memory management of DOS and run under a virtually « flat » memory model. These tools do also produce binaries that also require this memory expander.

The tools checker.exe and epure.exe have been developed with the version 1.12M4 of DJGPP (i.e. version 2.6.3 of the GNU gcc compiler) and incorporate the version 1.12M3 of GO32

Absence of symbol table

Developing the code that manages a symbol table for the C++ language requires a fair amount of work. On top of that, the developed code is very dependent of the used grammar. Considering the age of the used grammar it as been decided to avoid the burden of developing this management code and to rely on few « tricks » to have it running properly in almost 80% of the cases:

Any declared class becomes a legal type

Any typedef(ined) type also becomes a legal type.

Any identifier is by default considered as being a variable name. CAUTION: there is NO control on the validity of variable names.

The following special cases of identifier will be considered as types:

an identifier already defined as a class name or a typedef(ined) type.

an identifier that does not end with « _Code »);.

an identifier that begins by a  capital letter (but later contains small letters).

an identifier that only contains capital letters and begins by « T_ ».

Remark:

An identifier that contains only capital letters or the character « _ » but does not begins with « T_ » will be considered as a #défined constant (no control is performed) and is by default treated as a variable identifier.

Absence of pre-processor

The tool checker.exe does not call the CPP tool before analyzing a source file. For this reason, the files analyzed by checker.exe contain « #include », « #define » and other « #ifdef » statements. The version V1.0a of checker.exe is still unable to deal properly with these statements. Only the « #include » and « #define » statements are partially treated:

included files (using the « #include » statement) are analyzed only if they are user related/defined (i.e. their name is mentioned between « " ») and if their name extension differs from « NOT ». Files belonging to standard libraries (whose names are mentioned between « < » and « > »), are not analyzed. Recursive inclusions of the same file are detected in order to avoid infinite loops during the code analysis stage.

The management of the #definined objects is only partial (see the paragraph « Absence of symbol table »).

To integrate the pre-processor CPP in the translation process (before calling checker.exe) requires the full development of a symbol table.

Limits related to the C++ language

The type of « this »

In C++ inside a constructor or destructor method, the type of the auto-reference pointer « this » is always the type of the class whose constructor or destructor is considered.

In the constructors methods, this « limitation » only influences the execution speed when the initial states are tested: It is not possible to write a test that would only perform the control when we are in the last constructor to be executed.

Foo::Foo()

{

	<<< Constructor body + de-activation/re-activation of the controls  >>>

	if ( this(getClassCode() == Foo_Code )		useless because always true!!!

	{

		{	State* tmpPtr = this(getCurrentState();

			if(tmpPtr)	delete tmpPtr(estInitial(Foo_Code);

			else		throw InternalStateError(8);

		}

	}

}



In the destructors the problem is more complex. As nothing prevents a final state in a sub-class of having a parent state in the ancestor class which is NOT final in this later class, the only solution to avoid an exception to be raised in the destructor of the ancestor class, is to write the destructor of the sub-class in such a way that it will leaves the object to be further deleted in a final state for the ancestor class.

The called destructors

In C++, the method deleting the object that is called by the delete operator is selected at compile time on the basis of the type declared for the pointer referencing the object to be deleted.

It is thus possible, if the pointer used in the delete statement points in effect to an object instance of a sub-class of the class used to declare the pointer, to only « partially » delete a pointed object. Under of « programming with states » point of view this makes it possible to avoid some of the tests related to the final states of the objects to be deleted.

Example :

class A { ..... }

class B : public A { ..... }			

A* ptr = new B; 					

delete ptr;					

In this example, the statement « delete ptr » will only triggers the method A::~A.

The only solution to make sure that the right destruction methods are called is to declare any destructor method as being virtual. In such a case, the method deleting the object that is called by the delete operator is selected at runtime according to the effective type of the pointed object.

The use of exceptions in constructors and destructors

In C++ when an exception is raised with the throw statement, the execution stream is re-routed to the « nearest » exception handler declared (catch statement). However, between the moment the exception is raised and the moment the catch statement is entered, the ‘stack roll-out’ mechanism tends to delete any object that has been created between the entry in the « try » block and the point the exception has been raised. This roll-out mechanism intended to avoid the « memory leaks » gives some troubles when exceptions have to be used in constructors and destructors.

In the current version of the language (which seams to be the more stable one) it is just recommended to avoid using exceptions in destructors if exceptions are used in constructors, otherwise you may end-up having two exceptions raised before entering any exception handler and the program will terminate (the function terminate is automatically called).

This « behavior » of the C++ language gives some troubles to implement the control of the initial and final states as it prevents the use of exceptions in destructors methods.

Limits in the source code analysis

The version V1.0a of the checker.exe tool is able to analyze 80% of any « reasonable » enriched C++ code that respects the « version 2.0 » of the C++ grammar (i.e. multiple inheritance, virtual methods but no templates or exceptions) as well as the grammar of the state description (see chapter 6).

The most important restrictions is the impossibility to declare classes inside other classes.

The other limitations are related with the states declarations and are mentioned at « translation time » when the « verbose option » is chosen:

PROTOTYPE LIMIT : [Scanner] WARNING, Ignore the equivalence of the #defined identifier

PROTOTYPE LIMIT : [Parser]  WARNING, Unsupported VIRTUAL in ancestor declaration

PROTOTYPE LIMIT : [Parser]  WARNING, complex EXIT STATES are not supported

WARNING:

The limitations mentioned here are those known by the author at the time this documentation has been written. There may be many other limitations. If you append to discover some, please feel free to contact me (coordinates in the « readme.txt » file).

The #defined strings

As this has already been mentioned, the checker.exe tool does only partially analyses the « #xxx » statements. Concerning the « #define » statement, the « str2 » string meant to be used as a substitution of the « str1 » one in a statement « #define str1 str2 » is not stored by the tool. Thus even if the tool is able to recognize the « str1 » string, it can not substitute the « str2 » string to it

The limitation is especially annoying as it make it possible to avoid tests related with the states. As an example, it is sufficient to replace the return instruction thanks to a « #definie RETURN return » in order to avoid the tests related to the exit states of the methods.

On the other hand, this limitation can be used to « circumvent » some limitations of the grammar:

expected source code:

if ( <test expression> )

{

	throw Error ;	currently NOT supported by the grammar

}

« twisted » source code:

#define ERROR throw(Error) 	the unknown throw instruction is now « hiden »

if ( <test expression> )

{

	ERROR ;

}

Limits related to the control implementation

The complex exit states

Complexes exit states, i.e. involving changes in the object current state arrity are not properly handled.

This limitation is related to the way the method exit states are stored in the EXITSTAT.COD file. No information concerning the structure of the exit state is stored in this file. In order to store such an information the list if exit states should be divided in sub-lists.

In the same way the tool does not take into account the fact that the same method may be accepted by several « leaf states » composing the current state of an object and that in such a case we should store several lists of possible exit states.

The « toSignal » option

The key word « toSignal » has been added in the state grammar in order to provide some help to debug the programs. When it is used in the declaration of a state, as soon as the « getCurrentState » method defined in the class that defines this state computes that this state signature is verified, a message is displayed. The user know then that an object of type ‘T’ has entered the state ‘S’.

However, due to implementation limitation (related to the speed of the controls) this option is only effective for leaf states.

The management of redefined methods

Ideally, the description of the relationships between states and methods should distinguish:

the acceptance of a method in a given state (which purely depends on the state),

the declaration of the method exit state (which purely depends on the method).

In effect, the exit states of a method only depends on its implementation and thus on its possible re-definitions. When a method is re-defined in a sub-class and calls its « previous » version in an ancestor class the « behavior control mechanism » should:

control the exit state of each version of the executed method according to the declarations made at the level of the class defining the considered « version » of the method.

accept the execution of the requested « version » of the method according to the declarations that have been made at the level of the class defining the considered « version » of the method.

This implies that the « activation conditions » of the « first version » of the method should not change. This is easy to understand, because if the « new version » of the method is accepted is a state that has not as ancestor a state that was accepting the « previous version » it would not be possible to apply the second point concerning the exit states of the method (no exit state being defined for the method in this state in the ancestor class).

Example :

class A

{

void M1();

state S1

{

accepted: M1() (S2);

}

state S2

{

}

}�class B : public A

{

void M1();			redefinition of M1

state S3 : S2

{

accepted: M1() (S4);

}

}



void B::M1()

{

A::M1();				call to the previous version

}��The acceptation conditions of A::M1 are unchanged, the object should be in the state S1 at the time A::M1 is called. The exit state of A::M1 is also unchanged, the object has always t be in the state S2 after executing A::M1.

It is only the treatment carried out in the method B::M1 that can make the object change from S3 to S1 (in the example S3 is not a child of S1 which may not be recommended). In the same manner, it is only the execution of B::M1 that can make the object change from S2 to S4.

Generalization:

The activation conditions and the exit states declared for any « version » of a method are valid from the class that defines the considered « version » of the method, until any sub-class that defines the « next version » of the same method.
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The version V1.0a of the tool checker.exe does not preserve the initial activation conditions of the redefined methods. The may reason for this is that the activation conditions for a method are researched starting from the effective class of the instance willing to execute the method regardless of which version of the method it is (for more details see the relations between the methods estPermise and getClassCode). In order to core this problem, the estPermise method should accept as parameter a description of the « version » of the method to be executed (i.e. the class the method is defined in):

void Foo::method(int p1)

{

	{	State* tmpPtr = this(getCurrentState();

		if(tmpPtr)

		{

			delete tmpPtr( estPermise(this(getClassCode(),Foo_Code ,method_int,0);

		}

	}

Classes inheriting states without defining new ones

The version V1.0a of the tool checker.exe supports the use of classes that do not declare states inside hierarchies of classes declaring states. However, for the classes that do not declare states but:

declare an invariant

declare an incompatibility between states

the methods "getCurrentState", "isInState" and "getClassCode" are not declared. Thus the information related to the new invariant or the new incompatibility between classes are lost.

A similar problem occurs when a class that does not declare states has as an ancestor which declares states as well as pure virtual methods. In such a case, as the ancestor is not abstract by states, its interface is enriched with the methods "getCurrentState", "isInState" and "getClassCode" whereas the pure virtual methods as they have no body are not enriched with the proper tests. When these methods are declared for the first time in a sub-class that does not declare states, they are not enriched with the « behavior control tests ».

Increase of the execution time

The version V1.0a of the tool checker.exe generates a « behavior control code » that significantly slow down the translated applications. in the most unfavorable case:

long class hierarchy

small methods performing only very few computations and no display

we can assert the following results:

Case of a « cleaned » version of DEMODOC :

Application�without controls

option « -p »�with « light » controls

option « -tl »�with « full » controls

option « -t »��Code size�82 119�138 811

(ratio : 1.69)�143 137

(ratio : 1.74)��Execution time�0.00.44�0.27.65

(ratio : 62.82)�0.35.45

(ratio : 80.59)��Case of a « cleaned » version of DEMOLIFT :

Application�without controls

option « -p »�with « light » controls

option « -tl »�with « full » controls

option « -t »��Code size�106 855�192 312

(ratio : 1.80)�195 327

(ratio : 1.83)��Execution time�0.01.24�1.13.50

(ratio : 59.30)�2.16.83

(ratio : 110.35)��

�The examples

WARNING:

The proposed examples only intend to presents what the "Object Oriented Programming with States" paradigm is about. They do not intend to be a realistic or recommended illustration of how to use this powerful programming paradigm.

Having a look at the source files is probably the best way to learn how to use states in a class definition.

The DEMODOC example

Introduction

This program let the user manipulate an instance of the class LoanableDocument Which exports the behavior of a library document (it can be borrowed, returned, consulted, damaged, repaired). The example used a 3 classes hierarchy:

The class Document

The class RepairableDocument

The class LoanableDocument

Each sub-class inherits the states know (i.e. declared and inherited) in its ancestor class and might as well declare new states of re-define some of the inherited states.

The actions requested by the user triggers methods defined these 3 classes. Each of these methods is controlled by the « behavior control code » added by the checker.exe tool when the state and package declarations are analyzed and translated into native C++ code.

The Document class

The Document class is the root of the class hierarchy. Its states describe the minimal behavior of a library document that can not be borrowed nor repaired.

Model of the class Document

Static model:
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Dynamic model:

static view�dynamic view���INCORPORER MSDraw�����INCORPORER MSDraw�����Interface of the class Document

class Document

{	protected:

		int	reference;

	private:

 		void	setReference(int ref);				 method never mentioned in the states

			require: ref>=0;

			ensure: reference == ref;

	public:

			Document();

			~Document();

		void	registration(int);

		void	consult(void);

		int	getReference(void);



	invariant: reference > -1 ;

	package position

	{	accepted :	getReference();

	}

	state arrived : position initial 

	{	signature	:	getReference() == 0;

		accepted	:	registration(void) ( registered );

		refused	:	consult(void);

	}

	state registered	:	position final

	{	signature	:	getReference() != 0;

		accepted	:	consult(void);

		refused	:	registration(void) ;

	}

};

The class RepairableDocument

The class RepairableDocument is a specialization of the class Document, whose states describe the behavior of a Document that can be repared,

Models of the class RepairableDocument

Static model
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Dynamic model

static view�dynamic view���INCORPORER MSDraw�����INCORPORER MSDraw�����Interfaceof the class RepairableDocument

class RepairableDocument : public Document

{	protected:

		int	damaged;

	public:

			RepairableDocument();

			~ RepairableDocument();

		void	toRebind(void);

		void	rebound(void);

		int	isDamaged();



	state usable : position.registered final

	{	signature	:	! isDamaged();

		accepted	:	toRebind(void) (rebinding), isDamaged();

		refused	:	rebound(void), toRebind(void);

	}

	state rebinding : position. registered

	{	signature	:	isDamaged();

		accepted	:	rebound(void) (usable), isDamaged();

		refused	:	consult(void);

	}

	state position.arrived redefined initial				 modification of inherited states

	{	accepted	:	registered(int) (usable), isDamaged(); 

	}

};

		   

The class LoanableDocument

The class LoanableDocument is a specialization of the class RepairableDocument, whose states describe the behavior of a RepairableDocument that may be loaned but not reserved.

Models of the class LoanableDocument

Static model
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Dynamic model
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class LoanableDocument : public RepairableDocument

{	protected:

		int	borrower;

	public:

			LoanableDocument();

			~ LoanableDocument();

		void	loan(int person);

			require: person>0 ;

			ensure: borrower == person;

		void	toReturn(int person);

			require: borrower == person;

		void	renew();



	state present : position.usable final

	{	signature	:	!borrower ;

		accepted	:	loan(int) (loaned) ;

		refused	:	toReturn(int) renew() ;

	}

	state loaned : position.usable

	{	signature	:	borrower;

		accepted	:	toReturn(int)(present), renew()(loaned) ;

		refused	:	consult(), toRebind(),loan(int) ;

	}

	state position.rebinding redefined		modification of inherited states

	{	accepted	:	rebound(void) (present), isDamaged() ;

	}

	state position.arrived redefined initial

	{	accepted	:	registration(int)(present), isDamaged() ;

	}

};

The DEMOLIFT example

Introduction

This is a « big » example intended to put in practice all the possibilities of the « Programming with States » paradigm. As this example has considerably evolved over the time because of the improvements added to the Toolset, this documentation may not be up to date, however this documentation remains a good introduction (the source code of the example being the ultimate reference).

This example uses 14 classes (the « memoire » class having two specializations not represented on this diagram) whose relationships are presented here:
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The names of the classes (as well as most of the source code) is written in French and has not been translated. The English equivalent of the class names are given between square brackets when their interface is detailed (see bellow).

This application simulates the behavior of a lift. The user is provided with a menu allowing him to select 6 different actions:

Calling	(calling the lift at a designed floor)

Repair	(repairing the lift when its engine is worn-out).

signal floor	(simulate the arrival at a floor. This option replaces the physical sensors that a real lift 	would have and which purpose is to indicate that the lift is arrived at a new floor).

signal timer	(simulates the temporization before closing the lift door).

audit	(gives access to the internal state of the lift main components).

Quit	(no comment).

Calls to the lift are stored in a memory (the class « AbstractMemory »). There are two types of memory available:

a « LIFO » memory (which is not the best choice for a lift),

a « FIFO » memory (best suited for a lift).

The interest here is to notice in the classes « AbstractMemory », « FIFOMemory » and « LIFOMemory » how these different behaviors have been implemented.

Some « bugs » have deliberately been left into the program so that the efficiency of the object behavior control can be proved. Among these bugs are:

any attempt to call the lift when its door is open will trigger an execution error as this induces a transition to incompatible states (door open and lift moving).

any sequence of calls that contains two time the same floor (like 1-2-1) will triggers an execution error the second time the same floor is served. The reason being that the button associated with the floor has already be switched off the first time the lift has stopped at the floor.

Detail of the classes

The class Item

Class without states just used as a base class for certain classes of the hierarchy.

Interface of the class Item [Item]

class Item 

{	protected:

		int	reference ;

	public:

			Item ( int = 0 ) ;

			~Item ( ) ;

		int	getReference ( ) ; 

};

The class Cassable

Abstract class (abstract by states) used as the ancestor class for any class whose instances must have two major states Usable and Non-Usable. The signature of the states of the Cassable class is virtual as the composition of the class is not detailed, this is also the reason why the methods of this class (estRepare, estAbime and estUtilisé) are pure virtual (i.e. abstract).

A similar approach (without declaring abstract states), would have been to declare the states having for signature pure virtual methods:

	state   utilisable

	{	signature	:	estUtilisable() ;

and

	state inutilisable

	{	signature	:	!estUtilisable() ;

The method estUtilisable being pure virtual..



Interface of the class Cassable [Breakable]

class Cassable 

{	public:

				Cassable();

				~Cassable();

	virtual void	estRepare(void) = 0;

	virtual void	estAbime(void)  = 0;

	virtual void	estUtilise(void)= 0;



	package utilisabilite;

	state   utilisable : utilisabilite initial final

	{	signature	:	virtual;

		accepted	:	estUtilise(void)(utilisable,inutilisable), 									estAbime(void)(inutilisable);

		refused	:	estRepare(void);

	}  

	state   inutilisable : utilisabilite final

	{	signature	:	virtual;

		accepted	:	estRepare(void)(utilisable);

		refused	:	estAbime(void),estUtilise(void);

	}

};



The class Usable

This class is a specialization of the class Cassable that « concretize » the abstract inherited states and methods. The attributes « usure » and « limiteUsure » are used to determine of an object is utilisable or inutilisable. The state inutilisable is specialized by two sub-states (reparable and irreparable) based on the value of the attributes « nbReparations » and « limiteReparations ».

As the method « audit » is to be accepted by the « concretized » states, the list of accepted method of these states has to be redefined.

Interface of the class Usable

class Usable : public Cassable

{	protected :

		int	usure;

		int	limiteUsure;

		int	nbReparations;

		int	limiteReparations;

	public:

			Usable(int,int);

			~Usable();

		void	estRepare(void);

		void	estAbime(void);

		void	estUtilise(void);

		void	audit(void);



	state utilisabilite.utilisable redefined initial final

	{	signature	:	usure < limiteUsure ;

		accepted	:	audit(void), estUtilise(void)(utilisable,inutilisable), 								estAbime(void)(inutilisable);

liste reprise et enrichie avec "audit

	}

	state utilisabilite.inutilisable redefined final

	{	signature	:	usure == limiteUsure ;

		accepted	:	audit(void),estRepare(void)(utilisable);

liste reprise et enrichie avec "audit

	}

	state reparable : utilisabilite.inutilisable

	{	signature	:	nbReparations<limiteReparations;

		accepted	:	estAbime(void);			useless but to respect the declaration syntax

	}

	state irreparable : utilisabilite.inutilisable final

	{	signature	:	nbReparations == limiteReparations ;

		refused	:	estRepare(void);

	}

};

The classes Moteur and Inverseur

The classes Moteur and Inverseur illustrate the ability of the translator to support multiple inheritance even when all the ancestors do not export states.

As the class Moteur defines its own state packages, the arrity of the current state of its instances is equal to 2 (there is already a state package inherited from Usable). The same applies to Inverseur.

Interface of the class Moteur [Engine]

class Moteur : public Item , public Usable

{	protected :

		int vitesse;

	public:

			Moteur();

			~Moteur();

		void  accelerer(int);

		void  ralentir(int);

		void  stopper(void);

		int   getVitesse(void);



	friend void auditMoteur(Moteur*);



	invariant	:	vitesse >= 0 ;

	package rotation

	{	accepted	:	getVitesse(void);

	}

	state arrete : rotation initial final

	{	signature	:	vitesse == 0 ;

		accepted	:	accelerer(int)(nonArrete);

		refused	:	ralentir(int),stopper(void);

	}

	state nonArrete : rotation

	{	signature	:	vitesse > 0 ;

		accepted	:	accelerer(int),ralentir(int)(arrete,nonArrete),stopper(void)(arrete);

	}

};



Interface of the class Inverseur [Reversor]

class Inverseur : public Item , public Usable

{

	protected :

		int		sens ;

		Moteur*	primaire ;

	public:

			Inverseur ( ) ;

			~Inverseur ( ) ;

		void	setPrimaire ( Moteur * ) ;

		void	inverser ( void ) ;

		int	getSens ( void ) ;



	friend void auditInverseur(Inverseur*);



	invariant : ( sens == 1 ) || ( sens == -1 ) ;

	package direction

	{	accepted: getSens(void);

	}

	state nonAccouple : direction initial

	{	signature : primaire == 0 ;

		accepted  : setPrimaire(Moteur*)(accouple);

		refused   : inverser(void);

	}

	state accouple : direction

	{	signature : primaire != 0 ;

		refused   : setPrimaire(Moteur*);

	}

	state positif : direction.accouple final

	{	signature : sens == 1 ;

		accepted  : inverser(void)(negatif);

	}

	state negatif : direction.accouple final

	{	signature : sens == -1 ;

		accepted  : inverser(void)(positif);

	}

};

The class Propulseur

The class Propulseur illustrates the composition of the attributes states in order to create the states of the composed object (in the case of a class without ancestors defining states). This is the reason why the method « isInState » is often used in the class Propulseur.

On a pure analysis point of view, it would have been simpler (and probably better) to create the class Propulseur as a specialization of the class Cassable or Usable.

Interface of the class Propulseur [Propulsor]

class Propulseur : public Item

{	protected :

		Moteur*	moteur;

		Inverseur*	inverseur;

	public:

			Propulseur();

			~Propulseur();

		void  monter(void);

		void  descendre(void);

		void  arreter(void);

		void  estRepare(void);



		friend void auditPropulseur(Propulseur*);



	package etat;

	state utilisable : etat

	{	signature	:	(  (moteur->isInState(utilisabilite_utilisable))

	                  			 &&(inverseur->isInState(utilisabilite_utilisable))

         					);

		refused	:	estRepare(void);

	}

	state inutilisable : etat

	{	signature	:	(  (moteur->isInState(utilisabilite_inutilisable))

					||(inverseur->isInState(utilisabilite_inutilisable))

					);

		accepted	:	estRepare(void)(arrete);

		refused	:	monter(void),descendre(void),arreter(void);

	}

	state arrete : etat.utilisable initial final

	{	signature	:	moteur->isInState(rotation_arrete);

		accepted	:	monter(void)(monte,inutilisable),

					descendre(void)(descend,inutilisable);

		refused	:	arreter(void);

	}

	state mouvement : etat.utilisable

	{	signature	:	moteur->isInState(rotation_nonArrete);

		accepted	:	arreter(void)(arrete,inutilisable);

	}

	state monte : etat.mouvement

	{	signature	:	inverseur->isInState(direction_positif);

		refused	:	monter(void),descendre(void);

	}

	state descend : etat.mouvement

	{	signature : inverseur->isInState(direction_negatif);

		refused   : monter(void),descendre(void);

	}

};



The classes Porte and Bouton

The classes Porte and Bouton illustrate the multiple inheritance between classes when ancestor classes export abstract states.

Interface of the class Porte [Door]

class Porte : public Item , public Cassable

{	protected :

		int  ouverture;

		int  abime;

	public:

			Porte();

			~Porte();

		void	ouvrir(void);

		void	fermer(void);

		void	estRepare(void);			définition des méthodes virtuelles pures héritées

		void	estAbime(void);

		void	estUtilise(void);



	state utilisabilite.utilisable redefined initial final		définition des états abstraits hérités

	{	signature	:	abime == FALSE ;

	}  

	state utilisabilite.inutilisable redefined final

	{	signature	:	abime == TRUE ;

	}

	package position ;				définition de nouveaux états dans un nouveau package

	state fermee : position initial final

	{	signature	:	ouverture == FERMEE ;

		accepted	:	ouvrir(void)(ouverte);

		refused	:	fermer(void);

	}

	state ouverte : position

	{	signature	:	ouverture == OUVERTE ;

		accepted	:	fermer(void)(fermee);

		refused	:	ouvrir(void);

	}

};



Interface of the class Bouton [Button]

class Bouton : public Item , public Cassable

{	protected:

		int			actif;

		int			abime;

		int			code;

		Commande*	cible;

	public:

			Bouton(int);

			~Bouton();

		void	presser(void);

		void	reset(void);

		void	setCible(Commande*);

		int	getCode(void);

		void	estRepare(void);			définition des méthodes virtuelles pures héritées

		void	estAbime(void);

		void	estUtilise(void);



	invariant : ( code >= 0 ) && ( code <= NB_ETAGES ) ;



	state utilisabilite.utilisable redefined initial final		définition des états abstraits hérités

	{	signature	:	abime == FALSE ;

	}  

	state utilisabilite.inutilisable redefined final

	{	signature	:	abime == TRUE ;

	}

	package activation				définition de nouveaux états dans un nouveau package

	{	accepted	:	getCode(void);

	}

	state nonRelie : activation initial

	{	signature	:	cible == 0 ;

		accepted	:	setCible(Commande*)(eteint);

		refused	:	presser(void),reset(void);

	} 

	state relie : activation

	{	signature	:	cible != 0 ;

		refused	:	setCible(Commande*);

	}

	state allume : activation.relie

	{	signature	:	actif == ALLUME ;

		accepted	:	reset(void)(eteint),presser(void);

	}

	state eteint : activation.relie final

	{	signature	:	actif == ETEINT ;

		accepted	:	presser(void)(allume,eteint);

		refused	:	reset(void);

	}

};

The classes ListeBoutons and Mémoire

The class ListeBoutons and Memoire are bounded data structures (see source code of the classes « AbstractMemory », « FIFOMEmory » and « LIFOMemory » for more details).

Interface of the class ListeBoutons [List of Buttons]

class ListeBoutons

{	protected :

		Bouton*	listeAppels[TAILLE_LISTE];

		int		nbBoutons;

	public:

				ListeBoutons();

				~ListeBoutons();

		Bouton*	getBouton(int);

		void		addBouton(Bouton*);



	invariant: ( nbBoutons >= 0 ) && ( nbBoutons <= TAILLE_LISTE ) ;

	package remplissage ;

	state nonPleine : remplissage initial

	{	signature	:	( nbBoutons < TAILLE_LISTE ) ;

		accepted	:	addBouton(Bouton*)(nonPleine,pleine);

		refused	:	getBouton(int);

	}

	state pleine : remplissage final

	{	signature	:	nbBoutons == TAILLE_LISTE ;

		accepted	:	getBouton(int);

		refused	:	addBouton(Bouton*);

	}

};



Interface of the class Mémoire [Memory]

class Memoire

{	protected:

		int listeAppels[TAILLE_MEMOIRE];

		int nbAppels;

	public:

			Memoire();

			~Memoire();

		void	newAppel(int);

		void	ressetCurrentAppel(void);

		int	getCurrentAppel(void);



	invariant : ( nbAppels >= 0 ) && ( nbAppels <= TAILLE_MEMOIRE ) ;

	package appels ;

	state vide : appels initial final

	{	signature	:	nbAppels == 0;

		accepted	:	newAppel(int)(miPleine);

cette transition suppose une contenance minimale supérieure à 1

		refused	:	getCurrentAppel(void),ressetCurrentAppel(void);

	}

	state miPleine : appels

	{	signature	:	( nbAppels > 0 ) && ( nbAppels < TAILLE_MEMOIRE ) ;

		accepted	:	newAppel(int)(miPleine,pleine),

					getCurrentAppel(void),ressetCurrentAppel(void)(miPleine,vide);

	}

	state pleine : appels

	{	signature	:	nbAppels == TAILLE_MEMOIRE ;

		accepted	:	getCurrentAppel(void),ressetCurrentAppel(void)(miPleine);

cette transition suppose une contenance minimale supérieure à 1

		refused	:	newAppel(int);

	}

};

The class Commande

As the class Propulseur, the class Commande defines its states only by composition of its attributes states. The class Commande is in charge of the consistency between the states of the ListeBoutons and the Memoire. It would be interesting to enrich the class ListeBoutons with the states (allumé or éteint) related to the buttons contained in the list and to introduce these states in the invariant of the class Commande.

At present the invariant of the class Commande is only used during the initialization stage of its instances.

Interface of the class Commande [Command]

class Commande

{	protected :

		Memoire*      ptrMemoire;

		ListeBoutons* ptrLstBoutons;

		Cabine*       ptrMaitre;

	public:

			Commande();

			~Commande();

		void  resetCurrentAppel(void);

		void  newAppel(int);

		int   getNextAppel(void);

		void  setBouton(Bouton*);

		void  setMaitre(Cabine*);



	invariant :		(ptrMemoire!=0)&&(ptrLstBoutons!=0)

		            &&!(ptrLstBoutons->isInState(remplissage_nonPleine)

			          &&(!ptrMemoire->isInState(appels_vide))

			   );

	package operations;

	state nonInitialise : operations initial

	{	signature	:	(ptrMaitre==0)

					||(ptrLstBoutons->isInState(remplissage_nonPleine));

		accepted	:	setMaitre(Cabine*)(nonInitialise,initialise),

					setBouton(Bouton*)(nonInitialise,initialise);

		refused	:	resetCurrentAppel(void),newAppel(int),getNextAppel(void);

	}

	state initialise : operations 

	{	signature	:	(ptrMaitre!=0)&&(ptrLstBoutons->isInState(remplissage_pleine));

		refused	:	setBouton(Bouton*),setMaitre(Cabine*);

	}

	state attente : operations.initialise

	{	signature	:	!ptrMemoire->isInState(appels_vide);

		accepted 	:	resetCurrentAppel(void)(attente,repos),

					newAppel(int),getNextAppel(void);

	}

	state repos : operations.initialise final

	{	signature	:	ptrMemoire->isInState(appels_vide);

		accepted	:	newAppel(int)(attente,repos);

		refused	:	resetCurrentAppel(void),getNextAppel(void);

  }

};

The class Cabine

The class Cabine is the main class of this application. Its states are only created by composition of the states of its attributes.

Two packages are « fictively » created (it would have been possible to create only one and organize differently the states) but the purpose here is to illustrate the declaration and effective use of incompatibilities between states.

Interface of the class Cabine [Lift cabin]

class Cabine

{	protected :

		Commande*	ptrCommande;

		Porte*		ptrPorte;

		Propulseur*	ptrPropulseur;

		int			etageCourant;

	public:

			Cabine(Commande*,Porte*);

			~Cabine();

		void	topEtage(void);

		void	topTimerPorte(void);

		void	activate(void);

		int	getEtageCourant(void);

		void	reparer(void);



		friend void auditCabine(Cabine*);



	invariant : ( etageCourant >= 0 ) && ( NB_ETAGES >= etageCourant ) ;

	package ouverture;

	state cabineOuverte : ouverture

	{	signature	:	ptrPorte->isInState(position_ouverte);

		accepted	:	topTimerPorte(void)(cabineFermee);

	}

	state cabineFermee : ouverture initial final

	{	signature	:	ptrPorte->isInState(position_fermee);

		refused	:	topTimerPorte(void);

	}

	package mouvement

	{	accepted	:	getEtageCourant(void);

	}

	state enPanne : mouvement final

	{	signature	:	ptrPropulseur->isInState(etat_inutilisable);

		accepted	:	reparer(void)(utilisable);

		refused	:	topEtage(void),activate(void);

	}

	state utilisable : mouvement

	{	signature	:	ptrPropulseur->isInState(etat_utilisable);

		refused	:	reparer(void);

	}

	state arrete : mouvement.utilisable

	{	signature	:	ptrPropulseur->isInState(etat_arrete);

		refused	:	topEtage(void);

	}

	state enMouvement : mouvement.utilisable

	{	signature	:	ptrPropulseur->isInState(etat_mouvement);

		accepted	:	topEtage(void)(enMouvement,arrete,enPanne);

	}

	state repos : mouvement.arrete initial final

	{	signature	:	ptrCommande->isInState(operations_repos);

		refused	:	activate(void);

	}

	state attente : mouvement.arrete

	{	signature	:	ptrCommande->isInState(operations_attente);

		accepted	:	activate(void)(arrete,enMouvement,enPanne);

	}

	incompatibility

	{	(ouverture.cabineOuverte,mouvement.enMouvement)

	}

};

�Extension of the C++ language in order to integrate the state notion

Introduction

As there is no common grammar reference for the C++ language (as it exists for the Eiffel language) the grammar has been decomposed into major parts (that any C++ developer should recognize) in order to present the extensions that have been made to support the “programming with states” paradigm.

Before presenting the details of the grammar extensions, we need to be familiar with the terms used in the description.

Class_template 	represents the declarations made before a generic class in order to « predeclare » the identifiers used as types into this class declaration.

Class_inheritance 	represents the declarations related with the inheritance hierarchy of the class (ancestors list).

Acces_restriction	represents the occurrence of one of the following words private, protected or public used to determine the access rights to the class members declared after (using Member_declaration). The states and packages are not influenced by the Acces_restriction. By default the states and packages are always public.

Member_declaration	represents the usual declaration of a « classical member » of a class,  i.e. a method (Method_declaration) or an instance variable (Attribute_declaration).

Method_signature	represents the declaration of a method within a class (return type in any, name of the method, type and eventually name of parameters if any). 

Expression	represents a Boolean expression (that may contains call to functions or methods) and that must only use known attributes of the class. 

stateName	represents an identifier used as a state name.

packageName	represents an identifier used as a package name.

completeStateName	represents a double identifier used as a state name. This identifier states the package to which the state belongs (packageName.stateName).

qualifiedStateName	represents an identifier used as a state name that may states the package to which the state belongs ( [ packageName.] stateName).

methodName	represents a method name as well as its parameter list (example: « methOne(int, char) »). It is different from the Method_signature in the sense that it does not requires the return type and that it always refer to a method already declared.

« States » and « Packages » declarations

The enrichments added to the language only concern the class declarations (mentioned here as « Class »). 

Class	=	[ Class_template ] class className [ Class_inheritance ] 

		"{" Class_element ..... "}" ";"

Class_element	=	Acces_restriction | Member_declaration | Invariant_declaration | State_declaration | Package_declaration | Incomp_declaration

Member_declaration 	=	Attribute_declaration | Method_declaration

Method_declaration	=	[ frozen | virtual ] Method_signature ";"

		[ require ":" Expression ";" ]�

		[ ensure ":" Expression ";" ]1

Invariant_declaration =	invariant ":" Expression ";"

		[ incompatibilities ":" { "("completeStateName "," ... ")" "," ... } ";" ]

Package_declaration	=	package packageName [ Package_family ]

		( ";" | "{" Behavior_definition "}" )

Package_family	=	":" completeStateName

State_declaration	= 	state stateName

		( State_firts_declaration | State_redefinition | State_abandon )

State_first_declaration=	State_family [ initial ] [ final ]

		"{" Signature_definition Behavior_definition "}"

State_redefinition	= 	redefined [ initial ] [ final ]

		( "{" Signature_redefinition "}" | "{" Behavior_definition"}" |

		"{" Signature_definition Behavior_definition "}" )

State_abandon	= 	dead

State_family	= 	":" ( completeStateName | packageName )

Signature_definition	= 	signature ":" ( Expression  | virtual ) ";"

Signature_redefinition=	signature ":" Expression ";"

Behavior_definition	=	[ accepted ":" Accepted_behavior ";"] 

		[ refused ":" Refused_behavior ";"]



Accepted_behavior	=	( { methodName [ Exit_state_list ] "," ... } ";" | void )

Refused_behavior	=	( { methodName "," ... }  ";" | void )

Exit_state_list	=	"(" { State_tuple "," ... } ")"

State_tuple	=	"-" | "?" | State_choice |

		"{" { State_choice "," { State_choice "," ... } "}"

State_choice	=	qualifiedStateName | "(" { qualifiedStateName "," ... } ")"

Incomp_declaration	=	"(" { Incomp_item "," ... } ")"

Incomp_item	=	"(" { completeStateName "," ... } ")"

Restrictions

Some constraints bear on the pre/post conditions, states and packages declarations:

Destructor methods can not have pre/post conditions.

There may be no more than one occurrence of Incomp_declaration per class.

There may be no more than one occurrence of Invariant_declaration per class.

Any completeStateName or packageName used in a Package_family declaration or a State_family declaration as to be declared before.

A qualifiedStateName used into a State_choice declaration may not have been declared before. Nevertheless, at the end of a class declaration every qualifiedStateName used as to be defined.

A Package_declaration without any Package_family represents a package that is directly based on the class invariant. Such a package can not have a list of refused methods (« refused : .... » ).

The way state redefinitions are declared (paragraph State_redefinition) allows to redeclare simultaneously states by signature and behavior. A state redefined by signature can not have virtual as new signature.

An empty Accepted_behavior or Refused_behavior (for example: « accepted : void ; » or « refused : void ; »), is only accepted for a state redefinition (State_redefinition).

Testing the object current state

Every class that defines or inherits states is automatically provided with  the method « isInState » that allows to test if one of its instances is in a particular state.

Example :	if ( objet.isInState(completeStateName) )

Summary of the new key words

The syntactical extension of the language introduces 14 new key words.

state	precedes a state definition or redefinition.

package	precedes a state package definition.

redefined	notifies a state redefinition.

initial	points out that a state is initial.

final	points out that a state is terminal.

dead	points out that a state is abandoned.

invariant	precedes an expression that represents the class invariant that any instance of the class must respects.

require	precedes an expression that represents the pre-condition of a method.

ensure	precedes an expression that represents the post-condition of a method.

signature	precedes an expression that represents a part of the whole state’s signature, i.e. what characterizes the definition domains of this state from the definition domain of its parent (this parent may be a package or an other state).

accepted	precedes the list of the methods accepted in a state.

refused	precedes the list of methods refused in a state.

incompatibility	precedes the list of incompatible state tuples.

frozen	exactly the opposite of virtual. A frozen method can not be further derefined..



� As the expected behaviour of the objects has been expressed during the analysis phase (and detailed during the design phase), the purpose here is to check that the effective behaviour of the objects (implemented by the code written by the developers) conforms with the described one.

� The article entitled "Extension de la notion de type dans les langages orientés objet", (Bucharest 1995) explains the way to integrate more tidily the state notion and the object/class notion by merging them in the actual type notion. The purpose of this fusion is to allow compilers to perform better static control and to detect what is known as “inheritance anomalies” (i.e. description of a behaviour in a sub-class that doesn’t really conforms with the behaviour described in the ancestor class).

� These values depends on the translated code.

� If the translation mode for the class defining the tested method differs from « -TL ».

� This requires the ancestor classes being translated defore their sub-classes !

� In the class Foo the body of thie method is « virtual inline int getClassCode() { return Foo _Code; } ».

� This makes it possible to take into account a local redefinition by signature of the state used as a base for a new package.

� This « 0 » is used to re-start the research in other ancestor as we do not check that the called ancestor effectively defines the tested state..

� This version is still today the last produces by James A.Roskin.

�The Boolean expression used in pre/post conditions can make use of the parameters names used in the method definition. Is is then a good advice to make sure to use the same parameters names in method declarations and definitions.
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